Communications in Mathematical Physics

, Volume 306, Issue 3, pp 785–803 | Cite as

Specifying Angular Momentum and Center of Mass for Vacuum Initial Data Sets

Article

Abstract

We show that it is possible to perturb arbitrary vacuum asymptotically flat spacetimes to new ones having exactly the same energy and linear momentum, but with center of mass and angular momentum equal to any preassigned values measured with respect to a fixed affine frame at infinity. This is in contrast to the axisymmetric situation where a bound on the angular momentum by the mass has been shown to hold for black hole solutions. Our construction involves changing the solution at the linear level in a shell near infinity, and perturbing to impose the vacuum constraint equations. The procedure involves the perturbation correction of an approximate solution which is given explicitly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beig R., Ó Murchadha N.: The Poincaré group as the symmetry group of canonical general relativity. Ann. Physics 174(2), 463–498 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, 41. Princeton University Press, 1994Google Scholar
  3. 3.
    Christodoulou D., Ó Murchadha N.: The boost problem in general relativity. Commun. Math. Phys. 80(2), 271–300 (1981)ADSMATHCrossRefGoogle Scholar
  4. 4.
    Chruściel P.T.: Mass and angular-momentum inequalities for axi-symmetric initial data sets. I. Positivity of mass. Ann. Physics 323(10), 2566–2590 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Chruściel P.T., Corvino J., Isenberg J.: Construction of N-body initial data sets in general relativity. Commun. Math. Phys. 304, 637–647 (2011)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. Fr. (N.S.) 94 (2003)Google Scholar
  7. 7.
    Chruściel P.T., Li Y., Weinstein G.: Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular momentum. Ann. Physics 323(10), 2591–2613 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Chruściel P.T., Costa J.: Mass angular-momentum and charge inequalities for axisymmetric initial data. Class. Quantum Grav. 26(23), 235013 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Corvino J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214(1), 137–189 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Corvino J., Schoen R.: On the asymptotics for the vacuum Einstein constraint equations. J. Diff. Geom. 73(2), 185–217 (2006)MathSciNetMATHGoogle Scholar
  11. 11.
    Dain S.: Proof of the angular momentum-mass inequality for axisymmetric black holes. J. Diff. Geom. 79, 3–67 (2008)MathSciNetGoogle Scholar
  12. 12.
    Huang L.-H.: On the center of mass of isolated physical systems with general asymptotics. Class. Quantum Grav. 26(1), 015012 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Huang L.-H.: Solutions of special asymptotics to the Einstein constraint equations. Class. Quantum Grav. 27(24), 245002 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Klainerman, S., Nicolò, F.: The evolution problem in general relativity. Progress in Mathematical Physics, 25, Boston, MA: Birkhauser, 2003Google Scholar
  15. 15.
    Lindblad H., Rodnianski I.: Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256(1), 43–110 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Regge T., Teitelboim C.: Role of Surface Integrals in the Hamiltonian Formulation of General Relativity. Ann. Phys. 88, 286–318 (1974)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Zhang X.: Angular momentum and positive mass theorem. Commun. Math. Phys. 206, 137–155 (1999)ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations