Advertisement

Suitable Solutions for the Navier–Stokes Problem with an Homogeneous Initial Value

  • Pierre Gilles Lemarié–RieussetEmail author
  • Frédéric Lelièvre
Article

Abstract

This paper is devoted to the study of strong or weak solutions of the Navier–Stokes equations in the case of an homogeneous initial data. The case of small initial data is discussed. For large initial data, an approximation is developed, in the spirit of a paper of Vishik and Fursikov. Qualitative convergence is obtained by use of the theory of Muckenhoupt weights.

References

  1. BAS 06.
    Basson A.: Homogeneous Statistical Solutions and Local Energy Inequality for 3D Navier-Stokes Equations. Commun. Math. Phys. 266, 17–35 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. CAF 82.
    Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. CAN 95.
    Cannone M.: Ondelettes, paraproduits et Navier–Stokes. Diderot Editeur, Paris (1995)zbMATHGoogle Scholar
  4. GRU 06.
    Grujić Z.: Regularity of forward-in-time self-similar solutions to the 3D Navier–Stokes equations. Discrete Cont. Dyn. Systems 14, 837–843 (2006)zbMATHCrossRefGoogle Scholar
  5. KAT 84.
    Kato T.: Strong L p solutions of the Navier–Stokes equations in \({\mathbb R^m}\) with applications to weak solutions. Math. Zeit. 187, 471–480 (1984)zbMATHCrossRefGoogle Scholar
  6. LEL 10.
    Lelièvre, F.: A scaling and energy equality preserving approximation for the 3D Navier–Stokes equations in the finite energy case. Nonlinear Anal. TMA (2011, to appear)Google Scholar
  7. LEM 99.
    Lemarié-Rieusset, P.G.: Solutions faibles d’énergie infinie pour les équations de Navier–Stokes dans \({\mathbb R^3}\) . C. R. Acad. Sc. Paris 328, série I, 1133–1138 (1999)Google Scholar
  8. LEM 02.
    Lemarié-Rieusset P.G.: Recent developments in the Navier–Stokes problem. Boca Raton, FL, Chapman & Hall/CRC (2002)zbMATHCrossRefGoogle Scholar
  9. LEM 07.
    Lemarié-Rieusset P.G.: The Navier–Stokes equations in the critical Morrey–Campanato space. Rev. Mat. Iberoamer. 23, 897–930 (2007)zbMATHCrossRefGoogle Scholar
  10. LER 34.
    Leray J.: Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetzbMATHCrossRefGoogle Scholar
  11. PLE 03.
    Plecháč P., Šverák V.: Singular and regular solutions of a nonlinear parabolic system. Nonlinearity 16, 2093–2097 (2003)ADSGoogle Scholar
  12. PRA 07.
    Pradolini G., Salinas O.: Commutators of singular integrals on spaces of homogeneous type. Czech. Math. J. 57, 75–93 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. SCH 77.
    Scheffer V.: Hausdorff measures and the Navier–Stokes equations. Commun. Math. Phys. 55, 97–112 (1977)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. STE 93.
    Stein E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993)zbMATHGoogle Scholar
  15. VIS 77.
    Vishik M.I., Fursikov A.V.: Solutions statistiques homogènes des systèmes différentiels paraboliques et du système de Navier–Stokes. Ann. Scuola Norm. Sup. Pisa, série IV IV, 531–576 (1977)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Pierre Gilles Lemarié–Rieusset
    • 1
    Email author
  • Frédéric Lelièvre
    • 1
  1. 1.Équipe Analyse et Probabilités, EA2172Université d’Evry Val d’EssonneEvry cedexFrance

Personalised recommendations