Advertisement

Communications in Mathematical Physics

, Volume 306, Issue 1, pp 165–186 | Cite as

Min- and Max-Entropy in Infinite Dimensions

  • Fabian Furrer
  • Johan ÅbergEmail author
  • Renato Renner
Open Access
Article

Abstract

We consider an extension of the conditional min- and max-entropies to infinite-dimensional separable Hilbert spaces. We show that these satisfy characterizing properties known from the finite-dimensional case, and retain information-theoretic operational interpretations, e.g., the min-entropy as maximum achievable quantum correlation, and the max-entropy as decoupling accuracy. We furthermore generalize the smoothed versions of these entropies and prove an infinite-dimensional quantum asymptotic equipartition property. To facilitate these generalizations we show that the min- and max-entropy can be expressed in terms of convergent sequences of finite-dimensional min- and max-entropies, which provides a convenient technique to extend proofs from the finite to the infinite-dimensional setting.

Keywords

Separable Hilbert Space Projected State Strong Operator Topology Trace Class Operator Positive Operator Value Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Roger Colbeck and Marco Tomamichel for helpful comments and discussions, and an anonymous referee for very valuable suggestions. Fabian Furrer acknowledges support from the Graduiertenkolleg 1463 of the Leibniz University Hannover. We furthermore acknowledge support from the Swiss National Science Foundation (grant No. 200021-119868).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Journal 27, 379–423 and 623–656 (1948)Google Scholar
  2. 2.
    Rényi, A.: On measures of entropy and information. Proc. of the 4th Berkley Symp. on Math. Statistics and Prob. 1, Berkeley, CA: Univ. of Calif. Press, 1961, pp. 547–561Google Scholar
  3. 3.
    Barnum H., Nielsen M.A., Schumacher B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57, 4153–4175 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Schumacher B.: Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Renner, R.: Security of Quantum Key Distribution. Ph.D. thesis, Swiss Fed. Inst. of Technology, Zurich, 2005, Available at http://arXiv.org/abs/quant-ph/0512258v2, 2006
  6. 6.
    Renner, R., Wolf, S.: Smooth Renyi entropy and applications Proc. 2004 IEEE International Symposium on Information Theory, Piscataway, NJ: IEEE, 2004, p. 233Google Scholar
  7. 7.
    Renes, J. M., Renner, R.: One-Shot Classical Data Compression with Quantum Side Information and the Distillation of Common Randomness or Secret Keys. http://arXiv.org/abs/1008.0452v2 [quant-ph], 2010
  8. 8.
    Renner, R., Wolf, S., Wullschleger, J.: The Single-Serving Channel Capacity Proc. 2006 IEEE International Symposium on Information Theory, Piscataway, NJ: IEEE, 2006, pp. 1424–1427Google Scholar
  9. 9.
    Tomamichel M., Colbeck R., Renner R.: A Fully Quantum Asymptotic Equipartition Property. IEEE Trans. Inf. Th. 55, 5840–5847 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Berta, M., Christandl, M., Renner, R.: A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem. http://arXiv.org/abs/0912.3805v1 [quant-ph], 2009
  11. 11.
    Berta M., Christandl M., Colbeck R., Renes J.M., Renner R.: The uncertainty principle in the presence of quantum memory. Nature Physics 6, 659–662 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Datta N., Renner R.: Smooth Entropies and the Quantum Information Spectrum. IEEE Trans. Inf. Theor. 55, 2807–2815 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Han T.S.: Information-Spectrum Methods in Information Theory. Springer-Verlag, New York (2002)Google Scholar
  14. 14.
    Han T.S., Verdu S.: Approximation theory of output statistics. IEEE Trans. Inform. Theory 39, 752–772 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Datta N.: Min- and Max-Relative Entropies and a New Entanglement Monotone. IEEE Trans. Inf. Theor. 55, 2816–2826 (2009)CrossRefGoogle Scholar
  16. 16.
    Brandão F.G.S.L., Datta N.: One-shot rates for entanglement manipulation under non-entangling maps. IEEE Trans. Inf. Theor. 57, 1754 (2011)CrossRefGoogle Scholar
  17. 17.
    Buscemi F., Datta N.: Entanglement Cost in Practical Scenarios. Phys. Rev. Lett 106, 130503 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Mosonyi M., Datta N.: Generalized relative entropies and the capacity of classical-quantum channels. J. Math. Phys. 50, 072104 (2009)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Dahlsten O.C.O., Renner R., Rieper E., Vedral V.: Inadequacy of von Neumann entropy for characterizing extractable work. New J. Phys. 13, 053015 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    del Rio L., Åberg J., Renner R., Dahlsten O., Vedral V.: The thermodynamic meaning of negative entropy. Nature 474, 61–63 (2011)CrossRefGoogle Scholar
  21. 21.
    Scarani V., Bechmann-Pasquinucci H., Cerf N.J., Dušek M., Lütkenhaus N., Peev M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer-Verlag, New York (1979)Google Scholar
  23. 23.
    König R., Renner R., Schaffner C.: The Operational Meaning of Min- and Max-Entropy. IEEE Trans. Inf. Th. 55, 4337–4347 (2009)CrossRefGoogle Scholar
  24. 24.
    Tomamichel M., Colbeck R., Renner R.: Duality Between Smooth Min- and Max-Entropies. IEEE Trans. Inf. Th. 56, 4674–4681 (2010)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Lieb E.H., Ruskai M.B.: A Fundamental Property of Quantum-Mechanical Entropy. Phys. Rev. Lett. 30, 434–436 (1973)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Lieb E.H.: Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11, 267–288 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lieb E.H., Ruskai M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Owari M., Braunstein S.L., Nemoto K., Murao M.: Epsilon-convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systems. Quant. Inf. and Comp. 8, 30–52 (2008)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Kraus, K.: Lecture Notes in Physics 190, States, Effects, and Operations. Berlin Heidelberg: Springer-Verlag, 1983Google Scholar
  30. 30.
    Nielsen M.L., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  31. 31.
    Uhlmann A.: The transition probability in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Holenstein H., Renner R.: On the Randomness of Independent Experiments. IEEE Trans. Inf. Theor. 57(4), 1865–1871 (2011)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Kuznetsova A.A.: Quantum conditional entropy for infinite-dimensional systems. Theory Probab. Appl. 55, 782–790 (2010)MathSciNetGoogle Scholar
  34. 34.
    Klein O.: Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre. Z. f. Phys. A 72, 767–775 (1931)ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    Lindblad G.: Entropy, Information and Quantum Measurements. Commun. Math. Phys. 33, 305–322 (1973)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Lindblad G.: Expectations and Entropy Inequalities for Finite Quantum Systems. Commun. Math. Phys. 39, 111–119 (1974)MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Holevo A.S., Shirokov M.E.: Mutual and Coherent Information for Infinite-Dimensional Quantum Channels. Probl. Inf. Transm. 46, 201–217 (2010)CrossRefzbMATHGoogle Scholar
  38. 38.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. 2nd ed. New York: Wiley, 2006Google Scholar
  39. 39.
    Alicki R., Fannes M.: Continuity of quantum conditional information. J. Phys. A 37, L55–L57 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Horodecki M., Oppenheim J., Winter A.: Partial quantum information. Nature 436, 673–676 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    Berta, M.: Single-shot Quantum State Merging. Diploma thesis, ETH Zurich, February 2008, available at http://arXiv.org/abs/0912.4495v1 [quant-ph], 2009
  42. 42.
    Grümm H.R.: Two theorems about \({\mathcal{C}_{p}}\). Rep. Math. Phys. 4, 211–215 (1973)ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Simon, B.: Trace Ideals and Their Applications. 2nd ed. Providence, RI: Amer. Math. Soc., 2005Google Scholar
  44. 44.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. I: Functional Analysis. New York: Academic Press, 1978Google Scholar
  45. 45.
    Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. Providence, RI: Amer. Math. Soc., 1957Google Scholar

Copyright information

© The Author(s) 2011

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsLeibniz Universität HannoverHannoverGermany
  2. 2.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland

Personalised recommendations