Communications in Mathematical Physics

, Volume 306, Issue 2, pp 365–380 | Cite as

Rapid Convergence to Frequency for Substitution Tilings of the Plane

  • José Aliste-Prieto
  • Daniel Coronel
  • Jean-Marc GambaudoEmail author


This paper concerns self-similar tilings of the Euclidean plane. We consider the number of occurrences of a given tile in any domain bounded by a Jordan curve. For a large class of self-similar tilings, including many well-known examples, we give estimates of the oscillation of this number of occurrences around its average frequency times the total number of tiles in the domain, which depend only on the Jordan curve.


Jordan Curve Substitution Matrix Substitution Rule Dilation Factor Primitive Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ada04.
    Adamczewski B.: Symbolic discrepancy and self-similar dynamics (discrépance symbolique et dynamiques auto-similaires). Ann. de l’Inst. Fourier 54(7), 2201–2234 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. AP98.
    Anderson J., Putnam I.: Topological invariants for substitution tilings and their associated c *-algebras. Erg. Th. Dyn. Syst. 18(3), 509–537 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. APC.
    Aliste-Prieto, J., Coronel, D.: Tower systems for linearly repetitive Delone sets. Erg. Th. Dyn. Sys. doi: 10.1017/S0143385710000507, Nov. 2010
  4. Bel03.
    Bellissard, J.: The noncommutative geometry of aperiodic solids. In: Geometric and topological methods for quantum field theory (Villa de Leyva, 2001), pages 86–156. River Edge, NJ: World Sci. Publ., 2003Google Scholar
  5. BSYL09.
    Bindi L., Steinhardt P.J., Yao N., Lu P.J.: Natural Quasicrystals. Science 324(5932), 1306 (2009)ADSCrossRefGoogle Scholar
  6. CS06.
    Clark A., Sadun L.: When shape matters: deformations of tiling spaces. Erg. Th. Dyn. Sys. 26(1), 69–86 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Fog02.
    Pytheas Fogg, N.: Substitutions in dynamics, arithmetics and combinatorics. Edited by V. Berthé, S. Ferenczi, C. Mauduit A. Siegel, Volume 1794 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2002.Google Scholar
  8. GS87.
    Grünbaum B., Shephard G.C.: Tilings and patterns. W. H. Freeman and Company, Newyork (1987)zbMATHGoogle Scholar
  9. HJ90.
    Horn R.A., Johnson Ch.R.: Matrix analysis. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  10. IJ90.
    Iooss, G., Joseph, D.: Elementary stability and bifurcation theory. 2nd ed. Undergraduate Texts in Mathematics. New York: Springer-Verlag, 1990Google Scholar
  11. KP00.
    Kellendonk, J., Putnam, I.F.: Tilings, C *-algebras, and K-theory. In: Directions in mathematical quasicrystals, Volume 13, CRM Monogr. Ser., Providence, RI: Amer. Math. Soc., 2000, pp. 177–206Google Scholar
  12. LP03.
    Lagarias J.C., Pleasants P.A.B.: Repetitive Delone sets and quasicrystals. Erg. Th. Dyn. Sys. 23(3), 831–867 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. LMS02.
    Lee J.-Y., Moody R.V., Solomyak B.: Pure point dynamical and diffraction spectra. Ann. H. Poincare 3(5), 1003–1018 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. Pen80.
    Penrose, R.: Pentaplexity: a class of nonperiodic tilings of the plane. Math. Intelligencer 2(1), 32–37 (1979/80)Google Scholar
  15. Pey86.
    Peyriére, J.: Frequency of patterns in certain graphs and in Penrose tilings. At: Intl workshop on aperidic Les Houches, 1986 J. Physique 47(7, Suppl. Colloq. C3), 41–61 (1986)Google Scholar
  16. PFS09.
    Priebe Frank N., Sadun L.: Topology of some tiling spaces without finite local complexity. Disc. Con. Dyn. Syst. 23(3), 847–865 (2009)MathSciNetzbMATHGoogle Scholar
  17. Rad94.
    Radin C.: The pinwheel tilings of the plane. Ann. of Math. (2) 139(3), 661–702 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  18. Rau82.
    Rauzy G.: Nombres algébriques et substitutions. Bull. Soc. Math. France 110(2), 147–178 (1982)MathSciNetzbMATHGoogle Scholar
  19. Rob99.
    Robinson E.A. Jr.: On the table and the chair. Indag. Math. 10(4), 581–599 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. Rob04.
    Robinson, Jr. E.A.: Symbolic dynamics and tilings of \({{\mathbb R}^d}\). In: Symbolic dynamics and its applications, Volume 60, Proc. Sympos. Appl. Math., Providence, RI: Amer. Math. Soc., 2004, pp. 81–119Google Scholar
  21. SBGC84.
    Shechtman D., Blech I., Gratias D., Cahn J.W.: Metallic phase with long range orientational order and no translational symetry. Phys. Rev. Lett. 53(20), 1951–1954 (1984)ADSCrossRefGoogle Scholar
  22. Sen95.
    Senechal, M.: Quasicrystals and geometry. Cambridge: Cambridge University Press, 1995Google Scholar
  23. Sen81.
    Seneta, E.: Nonnegative matrices and Markov chains. 2nd ed., Springer Series in Statistics, New York: Springer-Verlag, 1981Google Scholar
  24. Sol97.
    Solomyak B.: Dynamics of self-similar tilings. Erg. Th. Dyn. Syst. 17(3), 695–738 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • José Aliste-Prieto
    • 1
  • Daniel Coronel
    • 2
  • Jean-Marc Gambaudo
    • 3
    Email author
  1. 1.Centro de Modelamiento MatemáticoUniversidad de ChileSantiagoChile
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Laboratoire J.-A. DieudonnéUniversité de Nice - Sophia Antipolis, CNRSNice Cedex 02France

Personalised recommendations