Communications in Mathematical Physics

, Volume 305, Issue 2, pp 513–532 | Cite as

Constructing Self-Dual Strings

Article

Abstract

We present an ADHMN-like construction which generates self-dual string solutions to the effective M5-brane worldvolume theory from solutions to the Basu-Harvey equation. Our construction finds a natural interpretation in terms of gerbes, which we develop in some detail. We also comment on a possible extension to stacks of multiple M5-branes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah M.F., Hitchin N.J., Drinfeld V.G., Manin Y.I.: Construction of instantons. Phys. Lett. A 65, 185 (1978)MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    Tong, D.: TASI lectures on solitons. http://arxiv.org/abs/hep-th/0509216v5 , 2005
  3. 3.
    Nahm W.: A simple formalism for the BPS monopole. Phys. Lett. B 90, 413 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Nahm, W.: All selfdual multi-monopoles for arbitrary gauge groups. Presented at Int. Summer Inst. on Theoretical Physics, Freiburg, West Germany, Aug 31–Sep 11, 1981Google Scholar
  5. 5.
    Nahm, W.: The construction of all selfdual multi-monopoles by the ADHM method. Talk at the Meeting on Monopoles in Quantum Field Theory, ICTP, Trieste, 1981Google Scholar
  6. 6.
    Diaconescu D.-E.: D-branes, monopoles and Nahm equations. Nucl. Phys. B 503, 220 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Tsimpis D.: Nahm equations and boundary conditions. Phys. Lett. B 433, 287 (1998)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Basu A., Harvey J.A.: The M2-M5 brane system and a generalized Nahm’s equation. Nucl. Phys. B 713, 136 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Bagger J., Lambert N.: Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Bagger J., Lambert N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Gustavsson A.: Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Aharony O., Bergman O., Jafferis D.L., Maldacena J.: \({\mathcal{N}=6}\) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. JHEP 10, 091 (2008)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Gustavsson A.: Selfdual strings and loop space Nahm equations. JHEP 04, 083 (2008)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Murray, M.K.: An introduction to bundle gerbes. http://arxiv.org/abs/0712.1651v3 [math.DG], 2008
  15. 15.
    Hitchin N.: Lectures on special lagrangian submanifolds http://arxiv.org/abs/math/9907034v1 [math.DG], 1999
  16. 16.
    Brylinski J.-L.: Loop spaces, characteristic classes and geometric quantization. Birkhäuser, Boston (2007)Google Scholar
  17. 17.
    Chatterjee, D.S.: On gerbs. PhD thesis, Trinity College, Cambridge, 1998Google Scholar
  18. 18.
    Noonan, M.: Calculus on categories. Preprint, available at http://www.math.cornell.edu/noonan/preprints/habitat.pdf
  19. 19.
    Gomi K., Terashima Y.: Higher-dimensional parallel transports. Math. Research Lett 8, 25 (2001)MathSciNetMATHGoogle Scholar
  20. 20.
    Hitchin N.J.: On the construction of monopoles. Commun. Math. Phys. 89, 145 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Schenk H.: On a generalized Fourier transform of instantons over flat tori. Commun. Math. Phys. 116, 177 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Gross D.J., Nekrasov N.A.: Monopoles and strings in noncommutative gauge theory. JHEP 07, 34 (2000)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    David S. Berman: M-theory branes and their interactions. Phys. Rept. 456, 89 (2008)CrossRefGoogle Scholar
  24. 24.
    Howe P.S., Lambert N.D., West P.C.: The self-dual string soliton. Nucl. Phys. B 515, 203 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Campos V.L., Ferretti G., Salomonson P.: The non-abelian self dual string on the light cone. JHEP 12, 011 (2000)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Stacey, A.: Comparative smootheology. http://arxiv.org/abs/0802.2225v2 [math.DG], 2010
  27. 27.
    Mukhi S., Papageorgakis C.: M2 to D2. JHEP 05, 085 (2008)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Terashima S.: On M5-branes in \({\mathcal{N}=6}\) membrane action. JHEP 08, 080 (2008)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Hanaki K., Lin H.: M2-M5 systems in \({\mathcal{N}=6}\) Chern-Simons theory. JHEP 09, 067 (2008)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Cherkis S., Saemann C.: Multiple M2-branes and generalized 3-Lie algebras. Phys. Rev. D 78, 066019 (2008)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Lazaroiu, C.I., McNamee, D., Saemann, C., Zejak, A.: Strong homotopy Lie algebras, generalized Nahm equations and multiple M2-branes. http://arxiv.org/abs/0901.3905v1 [hep-th], 2009
  32. 32.
    Filippov V.T.: n-Lie algebras. Sib. Mat. Zh 26, 126 (1985)MATHGoogle Scholar
  33. 33.
    de Azcarraga J.A., Izquierdo J.M.: n-ary algebras: a review with applications. J. Phys. A 43, 293001 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghUK
  2. 2.Maxwell Institute for Mathematical SciencesEdinburghUK

Personalised recommendations