Advertisement

Communications in Mathematical Physics

, Volume 305, Issue 2, pp 513–532 | Cite as

Constructing Self-Dual Strings

  • Christian Sämann
Article

Abstract

We present an ADHMN-like construction which generates self-dual string solutions to the effective M5-brane worldvolume theory from solutions to the Basu-Harvey equation. Our construction finds a natural interpretation in terms of gerbes, which we develop in some detail. We also comment on a possible extension to stacks of multiple M5-branes.

Keywords

Loop Space Selfdual String Bundle Gerbe Dirac Monopole Bogomolny Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah M.F., Hitchin N.J., Drinfeld V.G., Manin Y.I.: Construction of instantons. Phys. Lett. A 65, 185 (1978)MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Tong, D.: TASI lectures on solitons. http://arxiv.org/abs/hep-th/0509216v5 , 2005
  3. 3.
    Nahm W.: A simple formalism for the BPS monopole. Phys. Lett. B 90, 413 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Nahm, W.: All selfdual multi-monopoles for arbitrary gauge groups. Presented at Int. Summer Inst. on Theoretical Physics, Freiburg, West Germany, Aug 31–Sep 11, 1981Google Scholar
  5. 5.
    Nahm, W.: The construction of all selfdual multi-monopoles by the ADHM method. Talk at the Meeting on Monopoles in Quantum Field Theory, ICTP, Trieste, 1981Google Scholar
  6. 6.
    Diaconescu D.-E.: D-branes, monopoles and Nahm equations. Nucl. Phys. B 503, 220 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Tsimpis D.: Nahm equations and boundary conditions. Phys. Lett. B 433, 287 (1998)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Basu A., Harvey J.A.: The M2-M5 brane system and a generalized Nahm’s equation. Nucl. Phys. B 713, 136 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Bagger J., Lambert N.: Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Bagger J., Lambert N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Gustavsson A.: Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Aharony O., Bergman O., Jafferis D.L., Maldacena J.: \({\mathcal{N}=6}\) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. JHEP 10, 091 (2008)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Gustavsson A.: Selfdual strings and loop space Nahm equations. JHEP 04, 083 (2008)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Murray, M.K.: An introduction to bundle gerbes. http://arxiv.org/abs/0712.1651v3 [math.DG], 2008
  15. 15.
    Hitchin N.: Lectures on special lagrangian submanifolds http://arxiv.org/abs/math/9907034v1 [math.DG], 1999
  16. 16.
    Brylinski J.-L.: Loop spaces, characteristic classes and geometric quantization. Birkhäuser, Boston (2007)Google Scholar
  17. 17.
    Chatterjee, D.S.: On gerbs. PhD thesis, Trinity College, Cambridge, 1998Google Scholar
  18. 18.
    Noonan, M.: Calculus on categories. Preprint, available at http://www.math.cornell.edu/noonan/preprints/habitat.pdf
  19. 19.
    Gomi K., Terashima Y.: Higher-dimensional parallel transports. Math. Research Lett 8, 25 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hitchin N.J.: On the construction of monopoles. Commun. Math. Phys. 89, 145 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Schenk H.: On a generalized Fourier transform of instantons over flat tori. Commun. Math. Phys. 116, 177 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Gross D.J., Nekrasov N.A.: Monopoles and strings in noncommutative gauge theory. JHEP 07, 34 (2000)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    David S. Berman: M-theory branes and their interactions. Phys. Rept. 456, 89 (2008)CrossRefGoogle Scholar
  24. 24.
    Howe P.S., Lambert N.D., West P.C.: The self-dual string soliton. Nucl. Phys. B 515, 203 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Campos V.L., Ferretti G., Salomonson P.: The non-abelian self dual string on the light cone. JHEP 12, 011 (2000)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Stacey, A.: Comparative smootheology. http://arxiv.org/abs/0802.2225v2 [math.DG], 2010
  27. 27.
    Mukhi S., Papageorgakis C.: M2 to D2. JHEP 05, 085 (2008)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Terashima S.: On M5-branes in \({\mathcal{N}=6}\) membrane action. JHEP 08, 080 (2008)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Hanaki K., Lin H.: M2-M5 systems in \({\mathcal{N}=6}\) Chern-Simons theory. JHEP 09, 067 (2008)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Cherkis S., Saemann C.: Multiple M2-branes and generalized 3-Lie algebras. Phys. Rev. D 78, 066019 (2008)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Lazaroiu, C.I., McNamee, D., Saemann, C., Zejak, A.: Strong homotopy Lie algebras, generalized Nahm equations and multiple M2-branes. http://arxiv.org/abs/0901.3905v1 [hep-th], 2009
  32. 32.
    Filippov V.T.: n-Lie algebras. Sib. Mat. Zh 26, 126 (1985)zbMATHGoogle Scholar
  33. 33.
    de Azcarraga J.A., Izquierdo J.M.: n-ary algebras: a review with applications. J. Phys. A 43, 293001 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghUK
  2. 2.Maxwell Institute for Mathematical SciencesEdinburghUK

Personalised recommendations