Advertisement

Communications in Mathematical Physics

, Volume 306, Issue 2, pp 511–563 | Cite as

From Weak to Strong Coupling in ABJM Theory

  • Nadav Drukker
  • Marcos MariñoEmail author
  • Pavel Putrov
Article

Abstract

The partition function of \({\mathcal{N}=6}\) supersymmetric Chern–Simons-matter theory (known as ABJM theory) on \({\mathbb{S}^3}\) , as well as certain Wilson loop observables, are captured by a zero dimensional super-matrix model. This super–matrix model is closely related to a matrix model describing topological Chern–Simons theory on a lens space. We explore further these recent observations and extract more exact results in ABJM theory from the matrix model. In particular we calculate the planar free energy, which matches at strong coupling the classical IIA supergravity action on \({{\rm AdS}_4\times\mathbb{C}\mathbb{P}^3}\) and gives the correct N 3/2 scaling for the number of degrees of freedom of the M2 brane theory. Furthermore we find contributions coming from world-sheet instanton corrections in \({\mathbb{C}\mathbb{P}^3}\) . We also calculate non-planar corrections, both to the free energy and to the Wilson loop expectation values. This matrix model appears also in the study of topological strings on a toric Calabi–Yau manifold, and an intriguing connection arises between the space of couplings of the planar ABJM theory and the moduli space of this Calabi–Yau. In particular it suggests that, in addition to the usual perturbative and strong coupling (AdS) expansions, a third natural expansion locus is the line where one of the two ’t Hooft couplings vanishes and the other is finite. This is the conifold locus of the Calabi–Yau, and leads to an expansion around topological Chern–Simons theory. We present some explicit results for the partition function and Wilson loop observables around this locus.

Keywords

Modulus Space Matrix Model Wilson Loop Topological String Simons Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharony O., Bergman O., Jafferis D.L., Maldacena J.: \({\mathcal{N} = 6}\) superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. JHEP 0810, 091 (2008)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Gustavsson A.: Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bagger J., Lambert N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kapustin A., Willett B., Yaakov I.: Exact results for Wilson loops in superconformal Chern–Simons theories with matter. JHEP 1003, 089 (2010)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. http://arXiv.org/abs/0712.2824v2 [hep-th], 2010
  6. 6.
    Kapustin, A., Willett, B., Yaakov, I.: Nonperturbative Tests of Three-Dimensional Dualities. http://arXiv.org/abs/1003.5694v2 [hep-th], 2010
  7. 7.
    Drukker N., Trancanelli D.: A supermatrix model for \({\mathcal{N}=6}\) super Chern–Simons-matter theory. JHEP 1002, 058 (2010)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Mariño M., Putrov P.: Exact results in ABJM theory from topological strings. JHEP 1006, 011 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Mariño M.: Chern–Simons theory, matrix integrals, and perturbative three-manifold invariants. Commun. Math. Phys. 253, 25 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Aganagic M., Klemm A., Mariño M., Vafa C.: Matrix model as a mirror of Chern–Simons theory. JHEP 0402, 010 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Aharony O., Bergman O., Jafferis D.L.: Fractional M2-branes. JHEP 0811, 043 (2008)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Halmagyi N., Yasnov V.: The spectral curve of the lens space matrix model. JHEP 0911, 104 (2009)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Mariño, M., Pasquetti, S., Putrov, P.: Large N duality beyond the genus expansion. http://arXiv.org/abs/0911.4692v2 [hep-th], 2010
  15. 15.
    Drukker N., Plefka J., Young D.: Wilson loops in 3-dimensional \({\mathcal{N} = 6}\) supersymmetric Chern–Simons Theory and their string theory duals. JHEP 0811, 019 (2008)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Chen B., Wu J.B.: Supersymmetric Wilson loops in \({\mathcal{N} = 6}\) super Chern–Simons-matter theory. Nucl. Phys. B 825, 38 (2010)ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Rey S.J., Suyama T., Yamaguchi S.: Wilson loops in superconformal Chern–Simons theory and fundamental strings in Anti-de Sitter supergravity dual. JHEP 0903, 127 (2009)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Drukker N., Gomis J., Young D.: Vortex Loop Operators, M2-branes and Holography. JHEP 0903, 004 (2009)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Lee K.M., Lee S.: 1/2-BPS Wilson Loops and Vortices in ABJM Model. JHEP 1009, 004 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Tierz M.: Soft matrix models and Chern–Simons partition functions. Mod. Phys. Lett. A 19, 1365 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Mariño, M.: Les Houches lectures on matrix models and topological strings. http://arXiv.org/abs/hep-th/0410165v3, 2010
  22. 22.
    Dolivet Y., Tierz M.: Chern–Simons matrix models and Stieltjes-Wigert polynomials. J. Math. Phys. 48, 023507 (2007)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Bergman O., Hirano S.: Anomalous radius shift in AdS4/CFT3. JHEP 0907, 016 (2009)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Aharony O., Hashimoto A., Hirano S., Ouyang P.: D-brane charges in gravitational duals of 2+1 dimensional gauge theories and duality cascades. JHEP 1001, 072 (2010)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Klebanov I.R., Tseytlin A.A.: Entropy of near-extremal black p-branes. Nucl. Phys. B 475, 164 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Minahan, J.A., Sax, O.O., Sieg, C.: A limit on the ABJ model. http://arXiv.org/abs/1005.1786v1 [hep-th], 2010
  27. 27.
    Gadde, A., Pomoni, E., Rastelli, L.: Spin chains in \({\mathcal{N}=2}\) superconformal theories: from the \({\mathbb{Z}_2}\) quiver to superconformal QCD. http://arXiv.org/abs/1006.0015v1 [hep-th], 2010
  28. 28.
    Huang M.x., Klemm A.: Holomorphic anomaly in gauge theories and matrix models. JHEP 0709, 054 (2007)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Grimm T.W., Klemm A., Mariño M., Weiss M.: Direct integration of the topological string. JHEP 0708, 058 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Bershadsky M., Cecotti S., Ooguri H., Vafa C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Haghighat B., Klemm A., Rauch M.: Integrability of the holomorphic anomaly equations. JHEP 0810, 097 (2008)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Shenker, S.H.: The Strength of nonperturbative effects in string theory. In: Álvarez, O., Marinari, E., Windey, P. (eds.) Random surfaces and quantum gravity. New York: Plenum 1991, pp. 191–200Google Scholar
  33. 33.
    Drukker N., Fiol B.: All-genus calculation of Wilson loops using D-branes. JHEP 0502, 010 (2005)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Gomis J., Passerini F.: Holographic Wilson loops. JHEP 0608, 074 (2006)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Gomis J., Passerini F.: Wilson loops as D3-branes. JHEP 0701, 097 (2007)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Kapustin A., Saulina N.: Chern–Simons-Rozansky-Witten topological field theory. Nucl. Phys. B 823, 403 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Brini A., Tanzini A.: Exact results for topological strings on resolved Y(p, q) singularities. Commun. Math. Phys. 289, 205 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Erickson J.K., Semenoff G.W., Zarembo K.: Wilson loops in \({\mathcal{N} = 4}\) supersymmetric Yang-Mills theory. Nucl. Phys. B 582, 155 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Hosono, S., Klemm, A., Theisen, S.: Lectures on mirror symmetry. In: Lecture Notes in Phys., Vol. 436, Berlin: Heidelberg-NewYork: Springer, 1994, pp. 235–280Google Scholar
  40. 40.
    Chiang T.M., Klemm A., Yau S.T., Zaslow E.: Local mirror symmetry: Calculations and interpretations. Adv. Theor. Math. Phys. 3, 495 (1999)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Aganagic M., Bouchard V., Klemm A.: Topological strings and (almost) modular forms. Commun. Math. Phys. 277, 771 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. 42.
    Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in \({\mathcal{N} = 2}\) supersymmetric Yang-Mills theory. Nucl.Phys. B 426, 19 (1994) [Erratum-ibid. B 430, 485 (1994)]Google Scholar
  43. 43.
    Guadagnini E., Martellini M., Mintchev M.: Wilson lines in Chern–Simons theory and link invariants. Nucl. Phys. B 330, 575 (1990)MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Alvarez M., Labastida J.M.F.: Analysis of observables in Chern–Simons perturbation theory. Nucl. Phys. B 395, 198 (1993)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Drukker N., Gross D.J.: An exact prediction of \({\mathcal{N} = 4}\) SUSYM theory for string theory. J. Math. Phys. 42, 2896 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Drukker N., Gross D.J., Tseytlin A.A.: Green-Schwarz string in \({{\rm AdS}_5\times \mathbb{S}^5}\) : Semiclassical partition function. JHEP 0004, 021 (2000)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Kruczenski M., Tirziu A.: Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling. JHEP 0805, 064 (2008)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Drukker N.: 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model. JHEP 0609, 004 (2006)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Zarembo K.: Supersymmetric Wilson loops. Nucl. Phys. B 643, 157 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    Bak D., Yun S.: Thermal aspects of ABJM theory: Currents and condensations. Class. Quant. Grav. 27, 215011 (2010)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Balasubramanian V., Kraus P.: A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 208, 413 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. 52.
    Emparan R., Johnson C.V., Myers R.C.: Surface terms as counterterms in the AdS/CFT correspondence. Phys. Rev. D 60, 104001 (1999)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Cagnazzo A., Sorokin D., Wulff L.: String instanton in \({{\rm AdS}_4\times \mathbb{C}\mathbb{P}^3}\) . JHEP 1005, 009 (2010)MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    Giombi, S., Pestun, V., Ricci, R.: Notes on supersymmetric Wilson loops on a two-sphere. http://arXiv.org/abs/0905.0665v2 [hep-th], 2009
  55. 55.
    Arsiwalla X., Boels R., Mariño M., Sinkovics A.: Phase transitions in q-deformed 2d Yang-Mills theory and topological strings. Phys. Rev. D 73, 026005 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    Ambjorn, J., Chekhov, L., Kristjansen, C.F., Makeenko, Yu.: Matrix model calculations beyond the spherical limit. Nucl. Phys. B 404, 127 (1993) [Erratum-ibid. B 449, 681 (1995)]Google Scholar
  57. 57.
    Alday, L.F., Eden, B., Korchemsky, G.P., Maldacena, J., Sokatchev, E.: From correlation functions to Wilson loops. http://arXiv.org/abs/1007.3243v2 [hep-th], 2010
  58. 58.
    Klemm A., Mariño M., Rauch M.: Direct integration and non-perturbative effects in matrix models. JHEP 1010, 004 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. http://arXiv.org/abs/math-ph/0702045v4, 2007
  60. 60.
    Mariño M.: Open string amplitudes and large order behavior in topological string theory. JHEP 0803, 060 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    Bouchard V., Klemm A., Mariño M., Pasquetti S.: Remodeling the B-model. Commun. Math. Phys. 287, 117 (2009)ADSzbMATHCrossRefGoogle Scholar
  62. 62.
    Huang, M.x., Klemm, A.: Holomorphicity and modularity in Seiberg-Witten theories with matter. http://arXiv.org/abs/0902.1325v1 [hep-th], 2009
  63. 63.
    Eynard B., Mariño M., Orantin N.: Holomorphic anomaly and matrix models. JHEP 0706, 058 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    Mariño M., Schiappa R., Weiss M.: Nonperturbative effects and the large-order behavior of matrix models and topological strings. Commun. Number Theor. Phys. 2, 349 (2008)zbMATHGoogle Scholar
  65. 65.
    Pasquetti, S., Schiappa, R.: Borel and Stokes nonperturbative phenomena in topological string theory and c = 1 matrix models. http://arXiv.org/abs/0907.4082v2 [hep-th], 2010
  66. 66.
    Akemann G.: Higher genus correlators for the Hermitian matrix model with multiple cuts. Nucl. Phys. B 482, 403 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  67. 67.
    Klemm A., Mariño M., Theisen S.: Gravitational corrections in supersymmetric gauge theory and matrix models. JHEP 0303, 051 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    Yamaguchi S.: Wilson loops of anti-symmetric representation and D5-branes. JHEP 0605, 037 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    Lunin O.: 1/2-BPS states in M theory and defects in the dual CFTs. JHEP 0710, 014 (2007)MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    Hartnoll S.A., Kumar S.P.: Higher rank Wilson loops from a matrix model. JHEP 0608, 026 (2006)MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    Lin H., Lunin O., Maldacena J.M.: Bubbling AdS space and 1/2 BPS geometries. JHEP 0410, 025 (2004)MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    Bars, I.: Supergroups and their representations. In: Application of Group Theory in Phys. and Math. Phys., Lectures Appl. Math. 21, Providence, RI: Amer. Math. Soc., 1985, p. 17Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Département de Physique ThéoriqueUniversité de GenèveGenèveSwitzerland
  3. 3.Section de MathématiquesUniversité de GenèveGenèveSwitzerland

Personalised recommendations