Construction of N-Body Initial Data Sets in General Relativity

  • Piotr T. Chruściel
  • Justin Corvino
  • James Isenberg


Given a collection of N solutions of the (3 + 1) Einstein constraint equations which are asymptotically Euclidean and vacuum near infinity, we show how to construct a new solution of the constraints which is itself asymptotically Euclidean, and which contains specified sub-regions of each of the N given solutions. This generalizes earlier work which handled the time-symmetric case, thus providing a construction of large classes of initial data for the many body problem in general relativity.


  1. 1.
    Beig R., Chruściel P.T.: Killing Initial Data. Class. Quant. Grav. 14, A83–A92 (1996)CrossRefGoogle Scholar
  2. 2.
    Chandrasekhar S.: The mathematical theory of black holes. Oxford UP, Oxford (1984)Google Scholar
  3. 3.
    Chruściel P.T.: On the relation between the Einstein and Komar expressions for the energy of the gravitational field. Ann. Inst. H. Poincaré 42, 267–282 (1985)MATHGoogle Scholar
  4. 4.
    Chruściel, P.T., Corvino, J., Isenberg, J.: Construction of N-body time-symmetric initial data sets in general relativity. Cont. Math. (2009, to appear)
  5. 5.
    Chruściel, P.T., Delay, E.: Existence of non-trivial asymptotically simple vacuum space-times. Class. Quant. Grav. 19, L71–L79, erratum-ibid, 3389. 2002
  6. 6.
    Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. de France. 94. 2003
  7. 7.
    Chruściel, P.T., Delay, E.: Manifold structures for sets of solutions of the general relativistic constraint equations. J. Geom. Phys. 51, 442–472. 2004
  8. 8.
    Corvino J., Schoen R.M.: On the asymptotics for the vacuum Einstein constraint equations. J. Diff. Geom 73, 185–217 (2006)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Piotr T. Chruściel
    • 1
  • Justin Corvino
    • 2
  • James Isenberg
    • 3
  1. 1.GravitationsphysikUniversity of ViennaViennaAustria
  2. 2.Department of MathematicsLafayette CollegeEastonUSA
  3. 3.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations