Communications in Mathematical Physics

, Volume 305, Issue 1, pp 99–130 | Cite as

Deformations of Quantum Field Theories on Spacetimes with Killing Vector Fields

  • Claudio Dappiaggi
  • Gandalf Lechner
  • Eric Morfa-Morales
Article

Abstract

The recent construction and analysis of deformations of quantum field theories by warped convolutions is extended to a class of curved spacetimes. These spacetimes carry a family of wedge-like regions which share the essential causal properties of the Poincaré transforms of the Rindler wedge in Minkowski space. In the setting of deformed quantum field theories, they play the role of typical localization regions of quantum fields and observables. As a concrete example of such a procedure, the deformation of the free Dirac field is studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABD+05.
    Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J.: A gravity theory on noncommutative spaces. Class. Quant. Grav. 22, 3511–3532 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  2. Ara71.
    Araki H.: On quasifree states of CAR and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. Kyoto 6, 385–442 (1971)MathSciNetMATHCrossRefGoogle Scholar
  3. Ara99.
    Araki, H.: Mathematical Theory of Quantum Fields. Int. Series of Monographs on Physics. Oxford: Oxford University Press, 1999Google Scholar
  4. BB99.
    Borchers H.-J., Buchholz D.: Global properties of vacuum states in de Sitter space. Annales Poincare Phys. Theor. A70, 23–40 (1999)MathSciNetGoogle Scholar
  5. BDFP10.
    Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators. http://arxiv.org/abs/1005.2130v1 [hepth], 2010
  6. BDFS00.
    Buchholz D., Dreyer O., Florig M., Summers S.J.: Geometric modular action and spacetime symmetry groups. Rev. Math. Phys. 12, 475–560 (2000)MathSciNetMATHGoogle Scholar
  7. BGK+08.
    Blaschke D., Gieres F., Kronberger E., Schweda M., Wohlgenannt M.: Translation-invariant models for non-commutative gauge fields. J.Phys.A 41, 252002 (2008)MathSciNetADSCrossRefGoogle Scholar
  8. BGL02.
    Brunetti R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–786 (2002)MathSciNetMATHCrossRefGoogle Scholar
  9. Bie07.
    Bieliavsky, P.: Deformation quantization for actions of the affine group. http://arxiv.org/abs/1011.2370v1 [math.Q4], 2010,
  10. BLS10.
    Buchholz, D., Lechner, G., Summers, S.J.: Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories. Commun. Math. Phys. (2010). doi: 10.1007/s00220-010-1137-1
  11. BMS01.
    Buchholz D., Mund J., Summers S.J.: Transplantation of Local Nets and Geometric Modular Action on Robertson-Walker Space-Times. Fields Inst. Commun. 30, 65–81 (2001)MathSciNetGoogle Scholar
  12. Bor92.
    Borchers H.-J.: The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 315–332 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  13. Bor00.
    Borchers H.-J.: On revolutionizing quantum field theory with Tomita’s modular theory. J. Math. Phys. 41, 3604–3673 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  14. Bor09.
    Borchers, H.-J.: On the Net of von Neumann algebras associated with a Wedge and Wedge-causal Manifolds. Preprint (2009), available at http://www.theorie.physik.uni-goettingen.de/forschung/qft/publications/ 2009
  15. BPQV08.
    Balachandran A.P., Pinzul A., Qureshi B.A., Vaidya S.: S-Matrix on the Moyal Plane: Locality versus Lorentz Invariance. Phys. Rev. D 77, 025020 (2008)MathSciNetADSCrossRefGoogle Scholar
  16. BR97.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II. Berlin, Heidelberg-New York: Springer, 1997Google Scholar
  17. BS04.
    Buchholz D., Summers S.J.: Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties. J. Math. Phys. 45, 4810–4831 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  18. BS05.
    Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)ADSMATHCrossRefGoogle Scholar
  19. BS06.
    Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  20. BS07.
    Buchholz D., Summers S.J.: String- and brane-localized fields in a strongly nonlocal model. J. Phys. A40, 2147–2163 (2007)MathSciNetADSGoogle Scholar
  21. BS08.
    Buchholz D., Summers S.J.: Warped Convolutions: A Novel Tool in the Construction of Quantum Field Theories. In: Seiler, E., Sibold, K. (eds) Quantum Field Theory and Beyond: Essays in Honor of Wolfhart Zimmermann, pp. 107–121. World Scientific, River Edge, NJ (2008)CrossRefGoogle Scholar
  22. BW75.
    Bisognano J.J., Wichmann E.H.: On the Duality Condition for a Hermitian Scalar Field. J. Math. Phys. 16, 985–1007 (1975)MathSciNetADSMATHCrossRefGoogle Scholar
  23. CF84.
    Chandrasekhar S., Ferrari V.: On the Nutku-Halil solution for colliding impulsive gravitational waves. Proc. Roy. Soc. Lond. A396, 55 (1984)MathSciNetADSGoogle Scholar
  24. Cha83.
    Chandrasekhar S.: The mathematical theory of black holes. Oxford University Press, Oxford (1983)MATHGoogle Scholar
  25. DFR95.
    Doplicher S., Fredenhagen K., Roberts J.E.: The Quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  26. DHP09.
    Dappiaggi C., Hack T.-P., Pinamonti N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241–1312 (2009)MathSciNetMATHCrossRefGoogle Scholar
  27. DHR69.
    Doplicher S., Haag R., Roberts J.E.: Fields, observables and gauge transformations. I. Commun. Math. Phys. 13, 1–23 (1969)MathSciNetADSMATHCrossRefGoogle Scholar
  28. Dim82.
    Dimock J.: Dirac quantum fields on a manifold. Trans. Amer. Math. Soc. 269(1), 133–147 (1982)MathSciNetMATHCrossRefGoogle Scholar
  29. Dix77.
    Dixmier J.: C*-Algebras. North-Holland-Publishing Company, Amsterdam-New York-Oxford (1977)MATHGoogle Scholar
  30. EGBV89.
    Estrada R., Gracia-Bondia J.M., Varilly J.C.: On Asymptotic expansions of twisted products. J. Math. Phys. 30, 2789–2796 (1989)MathSciNetADSMATHCrossRefGoogle Scholar
  31. Ell06.
    Ellis G.F.R.: The Bianchi models: Then and now. Gen. Rel. Grav. 38, 1003–1015 (2006)ADSMATHCrossRefGoogle Scholar
  32. Foi83.
    Foit J.J.: Abstract Twisted Duality for Quantum Free Fermi Fields. Publ. Res. Inst. Math. Sci. Kyoto 19, 729–741 (1983)MathSciNetMATHCrossRefGoogle Scholar
  33. FPH74.
    Fulling S.A., Parker L., Hu B.L.: Conformal energy-momentum tensor in curved spacetime: Adiabatic regularization and renormalization. Phys. Rev. D10, 3905–3924 (1974)MathSciNetADSGoogle Scholar
  34. FV02.
    Fewster C.J., Verch R.: A quantum weak energy inequality for Dirac fields in curved spacetime. Commun. Math. Phys. 225, 331–359 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  35. Ger68.
    Geroch R.P.: Spinor structure of space-times in general relativity. I. J. Math. Phys. 9, 1739–1744 (1968)MathSciNetADSMATHCrossRefGoogle Scholar
  36. Ger70.
    Geroch R.P.: Spinor structure of space-times in general relativity II. J. Math. Phys. 11, 343–348 (1970)ADSMATHCrossRefGoogle Scholar
  37. GGBI+04.
    Gayral V., Gracia-Bondia J.M., Iochum B., Schucker T., Varilly J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246, 569–623 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  38. GL07.
    Grosse H., Lechner G.: Wedge-Local Quantum Fields and Noncommutative Minkowski Space. JHEP 11, 012 (2007)MathSciNetADSCrossRefGoogle Scholar
  39. GL08.
    Grosse H., Lechner G.: Noncommutative Deformations of Wightman Quantum Field Theories. JHEP 09, 131 (2008)MathSciNetADSCrossRefGoogle Scholar
  40. GLRV01.
    Guido D., Longo R., Roberts J.E., Verch R.: Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13, 125–198 (2001)MathSciNetMATHCrossRefGoogle Scholar
  41. GW05.
    Grosse H., Wulkenhaar R.: Renormalisation of phi 4 theory on noncommutative \({\mathbb{R}^4}\) in the matrix base. Commun. Math. Phys. 256, 305–374 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  42. Haa96.
    Haag, R.: Local Quantum Physics - Fields, Particles, Algebras. Berlin, Heidelberg-New York: Springer, 2nd-edition, 1996Google Scholar
  43. Kay85.
    Kay B.S.: The double-wedge algebra for quantum fields on Schwarzschild and Minkowski space-times. Commun. Math. Phys. 100, 57 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
  44. Key96.
    Keyl M.: Causal spaces, causal complements and their relations to quantum field theory. Rev. Math. Phys. 8, 229–270 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  45. LR07.
    Lauridsen-Ribeiro, P.: Structural and Dynamical Aspects of the AdS/CFT Correspondence: a Rigorous Approach. PhD thesis, Sao Paulo, 2007, available at http://arxiv.org/abs/0712.0401v3 [math-ph], 2008
  46. LW10.
    Longo, R., Witten, E.: An Algebraic Construction of Boundary Quantum Field Theory. Commun. Math. Phys. (2010). doi: 10.1007/s00220-010-1133-5
  47. MFB92.
    Mukhanov V.F., Feldman H.A., Brandenberger R.H.: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 215, 203–333 (1992)MathSciNetADSCrossRefGoogle Scholar
  48. Mo10.
    Morfa-Morales, E.: Work in progressGoogle Scholar
  49. O’N83.
    O’Neill B.: Semi-Riemannian Geometry. Academic Press, London-New York (1983)MATHGoogle Scholar
  50. OS09.
    Ohl T., Schenkel A.: Algebraic approach to quantum field theory on a class of noncommutative curved spacetimes. Gen. Rel. Grav. 42, 2785–2798 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  51. Ped79.
    G.K. Pedersen. C*-Algebras and their Automorphism Groups. Academic Press, 1979Google Scholar
  52. PV04.
    Paschke M., Verch R.: Local covariant quantum field theory over spectral geometries. Class. Quant. Grav. 21, 5299–5316 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  53. Reh00.
    Rehren K.-H.: Algebraic Holography. Ann. Henri Poincaré 1, 607–623 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  54. Rie92.
    Rieffel, M.A.: Deformation Quantization for Actions of R d. Volume 106 of Memoirs of the Amerian Mathematical Society. Providence, RI: Amer. Math. Soc., 1992Google Scholar
  55. San08.
    Sanders, K.: Aspects of locally covariant quantum field theory. PhD thesis, University of York, September, 2008, available at http://arxiv.org/abs/0809.4828v1 [math-ph], 2008
  56. San09.
    Sanders K.: On the Reeh-Schlieder Property in Curved Spacetime. Commun. Math. Phys. 288, 271–285 (2009)ADSMATHCrossRefGoogle Scholar
  57. San10.
    Sanders K.: The locally covariant Dirac field. Rev. Math. Phys. 22(4), 381–430 (2010)MathSciNetMATHCrossRefGoogle Scholar
  58. Sol08.
    Soloviev M.A.: On the failure of microcausality in noncommutative field theories. Phys. Rev. D77, 125013 (2008)MathSciNetADSGoogle Scholar
  59. Ste07.
    Steinacker H.: Emergent Gravity from Noncommutative Gauge Theory. JHEP 0712, 049 (2007)MathSciNetADSCrossRefGoogle Scholar
  60. Str08.
    Strich R.: Passive States for Essential Observers. J. Math. Phys. 49(022301), (2008)Google Scholar
  61. Sza03.
    Szabo R.J.: Quantum field theory on noncommutative spaces. Phys. Rept. 378, 207–299 (2003)ADSMATHCrossRefGoogle Scholar
  62. Tay86.
    Taylor M.E.: Noncommutative Harmonic Analysis. Amer. Math. Soc., Providence, RI (1986)MATHGoogle Scholar
  63. TW97.
    Thomas L.J., Wichmann E.H.: On the causal structure of Minkowski space-time. J. Math. Phys. 38, 5044–5086 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  64. Wal84.
    Wald R.M.: General Relativity. University of Chicago Press, Chicago, IL (1984)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Claudio Dappiaggi
    • 1
  • Gandalf Lechner
    • 2
  • Eric Morfa-Morales
    • 3
  1. 1.II. Institut für Theoretische PhysikHamburgDeutschland
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria
  3. 3.Erwin Schrödinger Institute for Mathematical Physics, ViennaViennaAustria

Personalised recommendations