Communications in Mathematical Physics

, Volume 303, Issue 1, pp 233–260 | Cite as

Decorrelation Estimates for the Eigenlevels of the Discrete Anderson Model in the Localized Regime

  • Frédéric KloppEmail author


The purpose of the present work is to establish decorrelation estimates for the eigenvalues of the discrete Anderson model localized near two distinct energies inside the localization region. In dimension one, we prove these estimates at all energies. In higher dimensions, the energies are required to be sufficiently far apart from each other. As a consequence of these decorrelation estimates, we obtain the independence of the limits of the local level statistics at two distinct energies.


Localization Center Eigenvalue Equation Anderson Model Random Operator Independent Poisson Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Dans ce travail, nous établissons des inégalités de décorrélation pour les valeurs propres proches de deux énergies distinctes. En dimension 1, nous démontrons que ces inégalités sont vraies quel que soit le choix de ces deux énergies. En dimension supérieure, il nous faut supposer que les deux énergies sont suffisamment éloignées l’une de l’autre. Comme conséquence de ces inégalités de décorrélation, nous démontrons que les limites des statistiques locales des valeurs propres sont indépendantes pour deux énergies distinctes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizenman M., Schenker J.H., Friedrich R.M., Dirk H.: Finite-volume fractional-moment criteria for Anderson localization. Comm. Math. Phys. 224(1), 219–253 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Bellissard J.V., Hislop P.D., Stolz G.: Correlation estimates in the Anderson model. J. Stat. Phys. 129(4), 649–662 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Billingsley, P.: Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics, second edition. New York: John Wiley & Sons Inc., 1999Google Scholar
  4. 4.
    Combes, J.-M., Germinet, F., Klein, A.: Poisson statistics for eigenvalues of continuum random Schrödinger operators. Preprint, available at [], (2009)
  5. 5.
    Combes J.-M., Germinet F., Klein A.: Generalized eigenvalue-counting estimates for the Anderson model. J. Stat. Phys. 135(2), 201–216 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Germinet F., Klein A.: New characterizations of the region of complete localization for random Schrödinger operators. J. Stat. Phys. 122(1), 73–94 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Germinet, F., Klopp, F.: Spectral statistics for random Schrödinger operators in the localized regime. In progress, available at [math.sp], (2010)
  8. 8.
    Germinet, F., Klopp, F.: Spectral statistics for the discrete Anderson model in the localized regime. [math.sp], (2010)
  9. 9.
    Graf G.M., Vaghi A.: A remark on the estimate of a determinant by Minami. Lett. Math. Phys. 79(1), 17–22 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Hislop, P.D.: Lectures on random Schrödinger operators. In: Fourth Summer School in Analysis and Mathematical Physics, Volume 476 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2008, pp. 41–131Google Scholar
  11. 11.
    Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Berlin: Springer-Verlag, 1995. Reprint of the 1980 editionGoogle Scholar
  12. 12.
    Kirsch, W.: An invitation to random Schrödinger operators. In: Random Schrödinger operators, Vol. 25 of Panor. Synthèses. Paris: Soc. Math. France, 2008. With an appendix by Frédéric Klopp, pp. 1–119Google Scholar
  13. 13.
    Kirsch, W., Metzger, B.: The integrated density of states for random Schrödinger operators. In: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Volume 76 of Proc. Sympos. Pure Math., Providence, RI: Amer. Math. Soc., 2007, pp. 649–696Google Scholar
  14. 14.
    Mehta, M.L.: Random matrices. Volume 142 of Pure and Applied Mathematics (Amsterdam). Amsterdam: Elsevier/Academic Press, third edition. 2004Google Scholar
  15. 15.
    Minami N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Comm. Math. Phys. 177(3), 709–725 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Minami, N.: Energy level statistics for random operators. In: Götze, F., Kirsch, W., Klopp, F., Kriecherbauer, T. (eds.) Disordered systems: random Schrödinger operators and random matrices, Volume 5 of Oberwolfach Reports, 2008, pp. 842–844Google Scholar
  17. 17.
    Molchanov S.: The local structure of the spectrum of a random one-dimensional Schrödinger operator. Trudy Sem. Petrovsk. 8, 195–210 (1982)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1978Google Scholar
  19. 19.
    Simon B.: Fine structure of the zeros of orthogonal polynomials. I. A tale of two pictures. Electron. Trans. Numer. Anal. 25, 328–368 (2006) (electronic)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Stoiciu M.: The statistical distribution of the zeros of random paraorthogonal polynomials on the unit circle. J. Approx. Theory 139(1-2), 29–64 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Veselić, I.: Existence and regularity properties of the integrated density of states of random Schrödinger operators. Volume 1917 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2008Google Scholar
  22. 22.
    Wegner F.: Bounds on the density of states in disordered systems. Z. Phys. B 44(1–2), 9–15 (1981)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.LAGA, U.M.R. 7539 C.N.R.S, Institut GaliléeUniversité Paris-NordVilletaneuseFrance
  2. 2.Institut Universitaire de FranceParisFrance

Personalised recommendations