Advertisement

Communications in Mathematical Physics

, Volume 303, Issue 1, pp 127–148 | Cite as

Topological Geon Black Holes in Einstein-Yang-Mills Theory

  • George T. Kottanattu
  • Jorma LoukoEmail author
Article
  • 89 Downloads

Abstract

We construct topological geon quotients of two families of Einstein-Yang-Mills black holes. For Künzle’s static, spherically symmetric SU(n) black holes with n > 2, a geon quotient exists but generically requires promoting charge conjugation into a gauge symmetry. For Kleihaus and Kunz’s static, axially symmetric SU(2) black holes a geon quotient exists without gauging charge conjugation, and the parity of the gauge field winding number determines whether the geon gauge bundle is trivial. The geon’s gauge bundle structure is expected to have an imprint in the Hawking-Unruh effect for quantum fields that couple to the background gauge field.

Keywords

Black Hole Gauge Group Gauge Transformation Black Hole Solution Principal Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sorkin, R.D.: Introduction to topological geons. In: Topological Properties and Global Structure of Space-time: Proceedings of the NATO Advanced Study Institute on Topological Properties and Global Structure of Space-time, Erice, Italy, 12–22 May 1985, edited by P. G. Bergmann, V. de Sabbata, New York: Plenum Press, 1986, pp. 249–270Google Scholar
  2. 2.
    Sorkin R.: The quantum electromagnetic field in multiply connected space. J. Phys. A 12, 403 (1979)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Friedman J.L., Sorkin R.D.: Spin 1/2 from gravity. Phys. Rev. Lett. 44, 1100 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Friedman J.L., Sorkin R.D.: Half integral spin from quantum gravity. Gen. Rel. Grav. 14, 615 (1982)MathSciNetADSzbMATHGoogle Scholar
  5. 5.
    Misner, C.W., Wheeler, J.A.: Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space. Annals Phys. (N.Y.) 2, 525, (1957); Reprinted in: J. A. Wheeler, Geometrodynamics. New York: Academic, 1962Google Scholar
  6. 6.
    Giulini, D.: 3-manifolds in canonical quantum gravity. Ph.D. Thesis, University of Cambridge, 1990Google Scholar
  7. 7.
    Giulini, D.: Two-body interaction energies in classical general relativity. In: Relativistic Astrophysics and Cosmology, Proceedings of the Tenth Seminar, Potsdam, October 21–26 1991, edited by Gottlöber, S., Mücket, J.P., Müller V. Singapore: World Scientific, 1992, pp. 333–338Google Scholar
  8. 8.
    Friedman, J.L., Schleich, K., Witt, D.M.: Topological censorship. Phys. Rev. Lett. 71, 1486 (1993) [Erratum-ibid. 75, 1872 (1995)]Google Scholar
  9. 9.
    Louko J., Marolf D.: Single-exterior black holes and the AdS-CFT conjecture. Phys. Rev. D 59, 066002 (1999)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Louko J., Marolf D., Ross S.F.: On geodesic propagators and black hole holography. Phys. Rev. D 62, 044041 (2000)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Maldacena J.M.: Eternal black holes in Anti-de-Sitter. JHEP 0304, 021 (2003)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Louko J., Mann R.B., Marolf D.: Geons with spin and charge. Class. Quant. Grav. 22, 1451 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Birrell N.D., Davies P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
  14. 14.
    Louko J., Marolf D.: Inextendible Schwarzschild black hole with a single exterior: how thermal is the Hawking radiation?. Phys. Rev. D 58, 024007 (1998)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Langlois, P.: Hawking radiation for Dirac spinors on the RP3 geon. Phys. Rev. D 70, 104008 (2004) [Erratum-ibid. D 72, 129902 (2005)]Google Scholar
  16. 16.
    Louko J.: Geon black holes and quantum field theory. J. Phys. Conf. Ser. 222, 012038 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Kiskis J.E.: Disconnected gauge groups and the global violation of charge conservation. Phys. Rev. D 17, 3196 (1978)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Bruschi, D.E., Louko, J.:Charged Unruh effect on geon spacetimes. http://arXiv./orglabs/1003.1297v1 [gr-qc], 2010 talk given by D. E. Bruschi at the 12th Marcel Grossmann meeting, Paris, France, 12–18 July 2009
  19. 19.
    Bruschi, D.E., Louko, J.: In preparationGoogle Scholar
  20. 20.
    Künzle H.P.: SU(n) Einstein Yang-Mills fields with spherical symmetry. Class. Quant. Grav. 8, 2283 (1991)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Bartnik R.: The structure of spherically symmetric su(n) Yang-Mills fields. J. Math. Phys. 38, 3623 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Künzle H.P.: Analysis of the static spherically symmetric SU(n) Einstein Yang-Mills equations. Commun. Math. Phys. 162, 371 (1994)ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Baxter J.E., Helbling M., Winstanley E.: Soliton and black hole solutions of su(N) Einstein-Yang-Mills theory in anti-de Sitter space. Phys. Rev. D 76, 104017 (2007)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Baxter J.E., Helbling M., Winstanley E.: Abundant stable gauge field hair for black holes in anti-de Sitter space. Phys. Rev. Lett. 100, 011301 (2008)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Kleihaus B., Kunz J.: Static black hole solutions with axial symmetry. Phys. Rev. Lett. 79, 1595 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Kleihaus B., Kunz J.: Static axially symmetric Einstein-Yang-Mills-dilaton solutions. II: Black hole solutions. Phys. Rev. D 57, 6138 (1998)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Conlon L.: Differentiable manifolds 2nd edition. Birkhauser, Boston (2001)zbMATHCrossRefGoogle Scholar
  28. 28.
    Harnad J.P., Vinet L., Shnider S.: Group actions on principal bundles and invariance conditions for gauge fields. J. Math. Phys. 21, 2719 (1980)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Molelekoa M.: Symmetries of gauge fields. J. Math. Phys. 26, 192 (1985)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E.: Exact Solutions of Einstein’s Field Equations 2nd edition. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  31. 31.
    Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. San Francisco, Freeman (1973)Google Scholar
  32. 32.
    Wang H.-C.: On invariant connections over a principal fibre bundle. Nagoya Math. J. 13, 1 (1958)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Volkov M.S., Gal’tsov D.V.: Gravitating non-abelian solitons and black holes with Yang-Mills fields. Phys. Rept. 319, 1 (1999)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Steenrod N.: The topology of fibre bundles. Princeton University Press, Princeton (1951)zbMATHGoogle Scholar
  35. 35.
    Naber G.L.: Topology, geometry and gauge fields: foundations. Springer, New York (1997)zbMATHGoogle Scholar
  36. 36.
    Kleihaus B., Kunz J., Sood A.: Charged SU(N) Einstein-Yang-Mills black holes. Phys. Lett. B 418, 284 (1998)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Nakahara M.: Geometry, topology and physics 2nd edition. IOP Publishing, Bristol (2003)CrossRefGoogle Scholar
  38. 38.
    Radu E., Winstanley E.: Static axially symmetric solutions of Einstein-Yang-Mills equations with a negative cosmological constant: Black hole solutions. Phys. Rev. D 70, 084023 (2004)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Kleihaus B., Kunz J.: Static axially symmetric Einstein Yang-Mills-dilaton solutions. I: Regular solutions. Phys. Rev. D 57, 834 (1998)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Kleihaus B.: On the regularity of static axially symmetric solutions in SU(2) Yang-Mills dilaton theory. Phys. Rev. D 59, 125001 (1999)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Kleihaus, B., Kunz, J.: Comment on ‘Singularities in axially symmetric solutions of Einstein-Yang-Mills and related theories, by L. Hannibal’, arXiv:hep-th/9903235Google Scholar
  42. 42.
    Bizon P.: Colored black holes. Phys. Rev. Lett. 64, 2844 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Künzle H.P., Masood-ul-Alam A.K.M.: Spherically symmetric static SU(2) Einstein-Yang-Mills fields. J. Math. Phys. 31, 928 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    Rácz I., Wald R.M.: Extension of space-times with Killing horizon. Class. Quant. Grav. 9, 2643 (1992)ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Rácz I., Wald R.M.: Global extensions of space-times describing asymptotic final states of black holes. Class. Quant. Grav. 13, 539 (1996)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations