Advertisement

Communications in Mathematical Physics

, Volume 301, Issue 1, pp 1–21 | Cite as

Quantum Symmetries and Exceptional Collections

  • Robert L. Karp
Article

Abstract

We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the \({{\mathbb Z}_5}\) symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity.

Keywords

Modulus Space Toric Variety Exceptional Divisor Gauge Linear Sigma Model Orbifold Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aspinwall P.S., Katz S.: Computation of superpotentials for D-Branes. Commun. Math. Phys. 264, 227–253 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Diaconescu D.-E., Garcia-Raboso A., Karp R.L., Sinha K.: D-Brane Superpotentials in Calabi-Yau Orientifolds. Adv. Theor. Math. Phys. 11, 471–516 (2007)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Douglas M.R.: D-branes, categories and N =  1 supersymmetry. J. Math. Phys. 42, 2818–2843 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Sharpe E.R.: D-branes, derived categories, and Grothendieck groups. Nucl. Phys. B 561, 433–450 (1999)zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Aspinwall, P.S., Bridgeland, T., Craw, A., Douglas, M.R., Gross, M., Kapustin, A., Moore, G., Segal, G., Szendroi, B., Wilson, P.: Dirichlet Branes and Mirror Symmetry. Providence, RI: Amer. Math. Soc. Clay Math. Inst. Vol. 4, 2009Google Scholar
  6. 6.
    Aspinwall, P.S.: D-branes on Calabi-Yau manifolds. In: Recent Trends in String Theory. River Edge, NJ: World Scientific, 2004, pp. 1–152Google Scholar
  7. 7.
    Sharpe, E.: Derived categories and stacks in physics. http://arxiv.org.abs/hep-th/0608056v2, 2006
  8. 8.
    Cox, D.A., Katz, S.: Mirror symmetry and algebraic geometry, Vol. 68 of Mathematical Surveys and Monographs. Providence, RI: Amer. Math. Soc., 1999Google Scholar
  9. 9.
    Aspinwall P.S., Karp R.L., Horja R.P.: Massless D-branes on Calabi-Yau threefolds and monodromy. Commun. Math. Phys. 259, 45–69 (2005)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Horja R.P.: Derived category automorphisms from mirror symmetry. Duke Math. J. 127(1), 1–34 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Canonaco A., Karp R.L.: Derived autoequivalences and a weighted Beilinson resolution. J. Geom. Phys. 58, 743–760 (2008)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Canonaco, A.: Exceptional sequences and derived autoequivalences. http://arxiv.org.abs/0801.0173v1 [math.A6], 2008
  13. 13.
    Zaslow E.: Solitons and helices: The Search for a math physics bridge. Commun. Math. Phys. 175, 337–376 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. http://arxiv.org.abs/hep-th0005247v2, 2000
  15. 15.
    Govindarajan S., Jayaraman T.: D-branes, exceptional sheaves and quivers on Calabi-Yau manifolds: From Mukai to McKay. Nucl. Phys. B 600, 457–486 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Tomasiello A.: D-branes on Calabi-Yau manifolds and helices. JHEP 02, 008 (2001)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Mayr P.: Phases of supersymmetric D-branes on Kaehler manifolds and the McKay correspondence. JHEP 01, 018 (2001)CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Cachazo F., Fiol B., Intriligator K.A., Katz S., Vafa C.: A geometric unification of dualities. Nucl. Phys. B 628, 3–78 (2002)zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Wijnholt M.: Large volume perspective on branes at singularities. Adv. Theor. Math. Phys. 7, 1117–1153 (2004)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Douglas, M.R., Moore, G.W.: D-branes, Quivers, and ALE Instantons. http://arxiv.org.abs/hep-th/9603167v1, 1996
  21. 21.
    Herzog C.P., Karp R.L.: Exceptional collections and D-branes probing toric singularities. JHEP 02, 061 (2006)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Herzog C.P., Karp R.L.: On the geometry of quiver gauge theories (Stacking exceptional collections). Adv. Theor. Math. Phys. 13, 1–38 (2010)MathSciNetGoogle Scholar
  23. 23.
    Karp R.L.: On the \({{\mathbb C}^n/{\mathbb Z}_m}\) fractional branes. J. Math. Phys. 50, 022304 (2009)CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Orlov D.O.: Equivalences of derived categories and K3 surfaces. J. Math. Sci. (New York) 84(5), 1361–1381 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kawamata Y.: Equivalences of derived categories of sheaves on smooth stacks. Amer. J. Math. 126(5), 1057–1083 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108(1), 37–108 (2001)Google Scholar
  27. 27.
    Rudakov, A.N., et al.: Helices and vector bundles. Vol. 148 of London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press, 1990Google Scholar
  28. 28.
    Karp R.L.: \({{\mathbb C}^2/{\mathbb Z}_n}\) fractional branes and monodromy. Commun. Math. Phys. 270, 163–196 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Huybrechts, D.: Fourier-Mukai transforms in algebraic geometry. Oxford Mathematical Monographs. Oxford: The Clarendon Press Oxford University Press, 2006Google Scholar
  30. 30.
    Aspinwall P.S.: Some navigation rules for D-brane monodromy. J. Math. Phys. 42, 5534–5552 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Kawamata Y.: Derived categories of toric varieties. Michigan Math. J. 54(3), 517–535 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of PhysicsVirginia TechBlacksburgUSA
  2. 2.Department of Systems BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations