Communications in Mathematical Physics

, Volume 301, Issue 2, pp 285–318 | Cite as

Transverse Laplacians for Substitution Tilings

  • Antoine Julien
  • Jean Savinien


Pearson and Bellissard recently built a spectral triple – the data of Riemannian noncommutative geometry – for ultrametric Cantor sets. They derived a family of Laplace–Beltrami like operators on those sets. Motivated by the applications to specific examples, we revisit their work for the transversals of tiling spaces, which are particular self-similar Cantor sets. We use Bratteli diagrams to encode the self-similarity, and Cuntz–Krieger algebras to implement it. We show that the abscissa of convergence of the ζ-function of the spectral triple gives indications on the exponent of complexity of the tiling. We determine completely the spectrum of the Laplace–Beltrami operators, give an explicit method of calculation for their eigenvalues, compute their Weyl asymptotics, and a Seeley equivalent for their heat kernels.


Dirac Operator Dirichlet Form Beltrami Operator Spectral Triple Bratteli Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albeverio, S., Karwowski, W.: Jump processes on leaves of multibranching trees. J. Math. Phys. 49(9), 093503, 20, (2008)Google Scholar
  2. 2.
    Anderson J.E., Putnam I.F.: Topological invariants for substitution tilings and their associated C*-algebras. Erg. Th. Dynam. Syst. 18(3), 509–537 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bellissard, J.: Schrödinger operators with almost periodic potential: an overview. In: Mathematical problems in theoretical physics (Berlin, 1981), Volume 153 of Lecture Notes in Phys., Berlin: Springer, 1982, pp. 356–363Google Scholar
  4. 4.
    Bellissard J., Benedetti R., Gambaudo J.-M.: Spaces of tilings, finite telescopic approximations and gap-labeling. Commun. Math. Phys. 261(1), 1–41 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Bellissard J., Bovier A., Ghez J.-M.: Gap labelling theorems for one-dimensional discrete Schrödinger operators. Rev. Math. Phys. 4(1), 1–37 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bellissard J., Kellendonk J., Legrand A.: Gap-labelling for three-dimensional aperiodic solids. C. R. Acad. Sci. Paris Sér. I Math. 332(6), 521–525 (2001)zbMATHMathSciNetADSGoogle Scholar
  7. 7.
    Bellissard J., van Elst A., Schulz-Baldes H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Benameur, M.-T., Oyono-Oyono, H.: Gap-labelling for quasi-crystals (proving a conjecture by J. Bellissard). In: Operator algebras and mathematical physics (Constanţa, 2001). Bucharest: Theta, 2003, pp. 11–22Google Scholar
  9. 9.
    Benameur M.-T., Oyono-Oyono H.: Index theory for quasi-crystals. I. Computation of the gap-label group. J. Funct. Anal. 252(1), 137–170 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bratteli O.: Inductive limits of finite dimensional C*-algebras. Trans. Amer. Math. Soc. 171, 195–234 (1972)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Christensen E., Ivan C.: Spectral triples for AF C*-algebras and metrics on the cantor set. J. Operator Theory 56(1), 17–46 (2006)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Connes A.: Géométrie non commutative. InterEditions, Paris (1990)zbMATHGoogle Scholar
  13. 13.
    Connes A.: Noncommutative geometry. Academic Press Inc., San Diego, CA (1994)zbMATHGoogle Scholar
  14. 14.
    Cuntz J., Krieger W.: A class of C*-algebras and topological Markov chains. Invent. Math. 56(3), 251–268 (1980)zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Durand F., Host B., Skau C.: Substitutional dynamical systems, Bratteli diagrams and dimension groups. Erg. The. Dyn. Syst. 19(4), 953–993 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Evans S.N.: Local properties of Lévy processes on a totally disconnected group. J. Theoret. Probab. 2(2), 209–259 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Falconer K.: Fractal geometry. John Wiley & Sons Ltd., Chichester (1990)zbMATHGoogle Scholar
  18. 18.
    Forrest A.H.: K-groups associated with substitution minimal systems. Israel J. Math. 98, 101–139 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Frank N.P.: A primer of substitution tilings of the Euclidean plane. Expo. Math. 26(4), 295–326 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Fukushima, M.: Dirichlet forms and Markov processes. Volume 23 of North-Holland Mathematical Library. Amsterdam: North-Holland Publishing Co., 1980Google Scholar
  21. 21.
    Giordano T., Matui H., Putnam I.F., Skau C.F.: Orbit equivalence for Cantor minimal \({\mathbb{Z}^2}\) -systems. J. Amer. Math. Soc. 21(3), 863–892 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Giordano T., Matui H., Putnam I.F., Skau C.F.: Orbit equivalence for Cantor minimal \({\mathbb{Z}^d}\) -systems. Invent. Math. 179(1), 119–158 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Giordano T., Putnam I.F., Skau C.F.: Topological orbit equivalence and C*-crossed products. J. Reine Angew. Math. 469, 51–111 (1995)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Grünbaum, B., Shephard, G.C.: Tilings and patterns. A Series of Books in the Mathematical Sciences. New York: W. H. Freeman and Company, 1989Google Scholar
  25. 25.
    Herman R.H., Putnam I.F., Skau C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3(6), 827–864 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Horn R.A., Johnson C.R.: Topics in matrix analysis. Cambridge University Press, Cambridge (1994) corrected reprint of the 1991 originalzbMATHGoogle Scholar
  27. 27.
    Julien, A., Savinien, J.: Embedding of self-similar ultrametric Cantor sets. Preprint available at [math.GN], 2010
  28. 28.
    Kaminker J., Putnam I.: A proof of the gap labeling conjecture. Michigan Math. J. 51(3), 537–546 (2003)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Kellendonk J.: Noncommutative geometry of tilings and gap labelling. Rev. Math. Phys. 7(7), 1133–1180 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kellendonk J.: The local structure of tilings and their integer group of coinvariants. Commun. Math. Phys. 187(1), 115–157 (1997)zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Kellendonk J.: Gap labelling and the pressure on the boundary. Commun. Math. Phys. 258(3), 751–768 (2005)zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Kellendonk J., Richter T., Schulz-Baldes H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14(1), 87–119 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Kellendonk J., Schulz-Baldes H.: Boundary maps for C*-crossed products with \({\mathbb{R}}\) with an application to the quantum Hall effect. Commun. Math. Phys. 249(3), 611–637 (2004)zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Kellendonk J., Schulz-Baldes H.: Quantization of edge currents for continuous magnetic operators. J. Funct. Anal. 209(2), 388–413 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Kenyon R.: The construction of self-similar tilings. Geom. Funct. Anal. 6(3), 471–488 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Lagarias J.C., Pleasants P.A.B.: Repetitive Delone sets and quasicrystals. Erg. Th. Dyn. Syst. 23(3), 831–867 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Marchal P.: Stable processes on the boundary of a regular tree. Ann. Probab. 29(4), 1591–1611 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Michon G.: Les cantors réguliers. C. R. Acad. Sci. Paris Sér. I Math. 300(19), 673–675 (1985)zbMATHMathSciNetGoogle Scholar
  39. 39.
    Pearson J.C., Bellissard J.V.: Noncommutative riemannian geometry and diffusion on ultrametric cantor sets. J. Noncommut. Geom. 3(3), 447–481 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Queffélec, M.: Substitution dynamical systems—spectral analysis. Volume 1294 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1987Google Scholar
  41. 41.
    Robinson, E.A., Jr.: Symbolic dynamics and tilings of \({\mathbb{R}^d}\) . In: Symbolic dynamics and its applications. Volume 60 of Proc. Sympos. Appl. Math. Providence, RI: Amer. Math. Soc., 2004, pp. 81–119Google Scholar
  42. 42.
    Solomyak B.: Dynamics of self-similar tilings. Erg. Th. Dyn. Syst. 17(3), 695–738 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Solomyak B.: Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20(2), 265–279 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Van Elst A.: Gap-labelling theorems for Schrödinger operators on the square and cubic lattice. Rev. Math. Phys. 6(2), 319–342 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Vershik, A.M., Livshits, A.N.: Adic models of ergodic transformations, spectral theory, substitutions, and related topics. In: Representation theory and dynamical systems, Volume 9 of Adv. Soviet Math. Providence, RI: Amer. Math. Soc., 1992, pp. 185–204Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Université de Lyon, CNRS, Université Lyon 1, Institut Camille JordanVilleurbanne CedexFrance
  2. 2.SFB 701Universität BielefeldBielefeldGermany

Personalised recommendations