Communications in Mathematical Physics

, Volume 301, Issue 1, pp 131–174 | Cite as

A Quantum Analogue of the First Fundamental Theorem of Classical Invariant Theory

  • G. I. LehrerEmail author
  • Hechun Zhang
  • R. B. Zhang


We establish a noncommutative analogue of the first fundamental theorem of classical invariant theory. For each quantum group associated with a classical Lie algebra, we construct a noncommutative associative algebra whose underlying vector space forms a module for the quantum group and whose algebraic structure is preserved by the quantum group action. The subspace of invariants is shown to form a subalgebra, which is finitely generated. We determine generators of this subalgebra of invariants and determine their commutation relations. In each case considered, the noncommutative modules we construct are flat deformations of their classical commutative analogues. Our results are therefore noncommutative generalisations of the first fundamental theorem of classical invariant theory, which follows from our results by taking the limit as q → 1. Our method similarly leads to a definition of quantum spheres, which is a noncommutative generalisation of the classical case with orthogonal quantum group symmetry.


Hopf Algebra Quantum Group Invariant Theory High Weight Vector Module Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen H.H., Polo P., Wen K.X.: Representations of quantum algebras. Invent. Math. 104(1), 1–59 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Atiyah M., Bott R., Patodi V.K.: On the heat equation and the index theorem. Invent. Math. 19, 279–330 (1973)zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Berenstein A., Zwicknagl S.: Braided symmetric and exterior algebras. Trans. Amer. Math. Soc. 360(7), 3429–3472 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brown, K.A., Goodearl K.R.: Lectures on algebraic quantum groups. Advanced Courses in Mathematics. CRM Barcelona, Basel: Birkhäuser Verlag, 2002Google Scholar
  5. 5.
    Brundan J.: Dual canonical bases and Kazhdan-Lusztig polynomials. J. Algebra 306(1), 17–46 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Connes A.: “Noncommutative geometry”. Academic Press, London-NewTork (1994)Google Scholar
  7. 7.
    de Concini C., Procesi C.: A characteristic free approach to invariant theory. Adv. Math. 21, 330–354 (1976)zbMATHCrossRefGoogle Scholar
  8. 8.
    Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 798–820, Providence, RI: Amer. Math. Soc., 1987, pp. 798–820Google Scholar
  9. 9.
    Du J., Scott L., Parshall B.: Quantum Weyl reciprocity and tilting modules. Commun. Math. Phys. 195(2), 321–352 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Goodearl K.R., Lenagan T.H., Rigal L.: The first fundamental theorem of coinvariant theory for the quantum general linear group. Publ. Res. Inst. Math. Sci. 36(2), 269–296 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goodearl, K.R., Lenagan, T.H.: Quantized coinvariants at transcendental q. In: Hopf algebras in noncommutative geometry and physics, Lecture Notes in Pure and Appl. Math., 239, New York: Dekker, 2005, pp. 155–165Google Scholar
  12. 12.
    Gover A.R., Zhang R.B.: Geometry of quantum homogeneous vector bundles and representation theory of quantum groups. I. Rev. Math. Phys. 11, 533–552 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gurevich, D.I., Pyatov, P.N., Saponov, P.A.: Quantum matrix algebras of GL(m|n)-type: the structure of the characteristic subalgebra and its spectral parametrization. (Russian) Teoret. Mat. Fiz. 147(1), 14–46 (2006); translation in Theoret. Math. Phys. 147(1), 460–485 (2006)Google Scholar
  14. 14.
    Howe R.: Transcending classical invariant theory. J Amer. Math. Soc. 2, 535–552 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jantzen, J.C.: Lectures on quantum groups. Graduate Studies in Mathematics, 6, Providence, RI: Amer. Math. Soc., 1996Google Scholar
  16. 16.
    Jimbo M.: A q-analogue of \({U({\mathfrak{gl}}(N+1))}\) , Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11(3), 247–252 (1986)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Leduc R., Ram A.: A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras. Adv. Math. 125, 1–94 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lehrer G.I., Zhang R.B.: Strongly multiplicity free modules for Lie algebras and quantum groups. J. Alg. 306(1), 138–174 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lehrer, G.I., Zhang, R.B.: A Temperley-Lieb analogue for the BMW-algebra, Progress in Mathematics, Basel-Boston: Birkhäuser, in pressGoogle Scholar
  20. 20.
    Loday, J.-L.: Cyclic homology, Appendix E by Mara O. Ronco. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 301, Berlin: Springer-Verlag, 1992Google Scholar
  21. 21.
    Manin, Yu.: Quantum groups and noncommutative geometry. Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988Google Scholar
  22. 22.
    Montgomery, S.: Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, Vol. 82, Providence, RI: Amer. Math. Soc., 1993Google Scholar
  23. 23.
    Müller E.F., Schneider H.-J.: Quantum homogeneous spaces with faithfully flat module structures. Israel J. Math. 111, 157–190 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Podleś P.: Differential calculus on quantum spheres. Lett. Math. Phys. 18(2), 107–119 (1989)zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Procesi C.: The invariant theory of n × n matrices. Adv. Math. 19, 306–381 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ram A., Wenzl H.: Matrix units for centralizer algebras. J. Alg. 145, 378–395 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Reshetikhin N.Yu., Turaev V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127(1), 1–26 (1990)zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Reshetikhin N., Turaev V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547–597 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Rossi-Doria O.: A Uq(sl(2))-representation with no quantum symmetric algebra. Rend. Mat. Acc. Lincei s., 9 10, 5–9 (1999)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Strickland E.: Classical invariant theory for the quantum symplectic group. Adv. Math. 123(1), 78–90 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Wenzl H.: On tensor categories of Lie type E N, N ≠ 9. Adv. Math. 177(1), 66–104 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Weyl, H.: The classical groups. Their invariants and representations. Fifteenth printing. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton, NJ: Princeton University Press, 1997Google Scholar
  33. 33.
    Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Zhang R.B., Gould M.D., Bracken A.J.: From representations of the braid group to solutions of the Yang-Baxter equation. Nucl. Physics B 354(2-3), 625–652 (1991)CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Zhang R.B.: Structure and representations of the quantum general linear supergroup. Commun. Math. Phys. 195, 525–547 (1998)zbMATHCrossRefADSGoogle Scholar
  36. 36.
    Zhang R.B.: Howe duality and the quantum general linear group. Proc. Amer. Math. Soc. 131(9), 2681–2692 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Zwicknagl S.: R-matrix Poisson algebras and their deformations. Adv. Math. 220(1), 1–58 (2009)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia
  2. 2.Department of Mathematical SciencesTsinghua UniversityBeijingChina

Personalised recommendations