Advertisement

Communications in Mathematical Physics

, Volume 300, Issue 3, pp 641–657 | Cite as

Uniqueness of Ground States for Short-Range Spin Glasses in the Half-Plane

  • Louis-Pierre Arguin
  • Michael DamronEmail author
  • C. M. Newman
  • D. L. Stein
Article

Abstract

We consider the Edwards-Anderson Ising spin glass model on the half-plane \({\mathbb{Z} \times \mathbb{Z}^+}\) with zero external field and a wide range of choices, including mean zero Gaussian for the common distribution of the collection J of i.i.d. nearest neighbor couplings. The infinite-volume joint distribution \({\mathcal{K}(J,\alpha)}\) of couplings J and ground state pairs α with periodic (respectively, free) boundary conditions in the horizontal (respectively, vertical) coordinate is shown to exist without need for subsequence limits. Our main result is that for almost every J, the conditional distribution \({\mathcal{K}(\alpha\,|\,J)}\) is supported on a single ground state pair.

Keywords

Excited State Domain Wall Spin Glass Conditional Measure Spin Glass Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman M., Wehr J.: Rounding Effects of Quenched Randomness on First-Order Phase Transitions. Commun. Math. Phys. 130, 489–528 (1990)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Binder K., Young A.P.: Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986)CrossRefADSGoogle Scholar
  3. 3.
    Edwards S., Anderson P.W.: Theory of spin glasses. J. Phys. F 5, 965–974 (1975)CrossRefADSGoogle Scholar
  4. 4.
    Jackson T.S., Read N.: Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model. Phys. Rev. E 81, 021130-1–021130-16 (2010)ADSGoogle Scholar
  5. 5.
    Jackson T.S., Read N.: Theory of minimum spanning trees. II. Exact graphical methods and perturbation expansion at the percolation threshold. Phys. Rev. E 81, 021131-1–021131-31 (2010)ADSGoogle Scholar
  6. 6.
    Loebl M.: Ground state incongruence in 2D spin glasses revisited. Elect. J. Comb. 11, R40 (2004)MathSciNetGoogle Scholar
  7. 7.
    Mézard M., Parisi G., Virasoro M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)zbMATHGoogle Scholar
  8. 8.
    Middleton A.A.: Numerical investigation of the thermodynamic limit for ground states in models with quenched disorder. Phys. Rev. Lett. 83, 1672–1675 (1999)CrossRefADSGoogle Scholar
  9. 9.
    Newman C.: Topics in Disordered Systems. Birkhaüser, Basel (1997)zbMATHGoogle Scholar
  10. 10.
    Newman C.M., Stein D.L.: Spin-glass model with dimension-dependent ground state multiplicity. Phys. Rev. Lett. 72, 2286–2289 (1994)CrossRefADSGoogle Scholar
  11. 11.
    Newman C.M., Stein D.L.: Ground state structure in a highly disordered spin glass model. J. Stat. Phys. 82, 1113–1132 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Newman C.M., Stein D.L.: Spatial inhomogeneity and thermodynamic chaos. Phys. Rev. Lett. 76, 4821–4824 (1996)CrossRefADSGoogle Scholar
  13. 13.
    Newman C.M., Stein D.L.: Metastate approach to thermodynamic chaos. Phys. Rev. E 55, 5194–5211 (1997)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Newman, C.M., Stein, D.L.: Thermodynamic chaos and the structure of short-range spin glasses. In: Mathematics of Spin Glasses and Neural Networks, ed. Bovier, A., Picco, P., Boston: Birkhäuser, 1997, pp. 243–287Google Scholar
  15. 15.
    Newman C.M., Stein D.L.: Simplicity of state and overlap structure in finite volume realistic spin glasses. Phys. Rev. E 57, 1356–1366 (1998)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Newman C.M., Stein D.L.: Nature of ground state incongruence in two-dimensional spin glasses. Phys. Rev. Lett. 84, 3966–3969 (2000)CrossRefADSGoogle Scholar
  17. 17.
    Newman C.M., Stein D.L.: Are there incongruent ground states in 2D Edwards-Anderson spin glasses?. Commun. Math. Phys. 224(1), 205–218 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Newman C.M., Stein D.L.: Topical Review: Ordering and Broken Symmetry in Short-Ranged Spin Glasses. J. Phys.: Cond. Mat. 15, R1319–R1364 (2003)CrossRefADSGoogle Scholar
  19. 19.
    Palassini M., Young A.P.: Evidence for a trivial ground-state structure in the two-dimensional Ising spin glass. Phys. Rev. B 60, R9919–R9922 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Sherrington D., Kirkpatrick S.: Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792–1796 (1975)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Louis-Pierre Arguin
    • 1
  • Michael Damron
    • 2
    Email author
  • C. M. Newman
    • 1
  • D. L. Stein
    • 3
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Mathematics DepartmentPrinceton UniversityPrincetonUSA
  3. 3.Courant Institute of Mathematical Sciences and Physics DepartmentNew York UniversityNew YorkUSA

Personalised recommendations