Communications in Mathematical Physics

, Volume 300, Issue 3, pp 673–713 | Cite as

Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces I

Open Access
Article

Abstract

We define the partition and n-point functions for a vertex operator algebra on a genus two Riemann surface formed by sewing two tori together. We obtain closed formulas for the genus two partition function for the Heisenberg free bosonic string and for any pair of simple Heisenberg modules. We prove that the partition function is holomorphic in the sewing parameters on a given suitable domain and describe its modular properties for the Heisenberg and lattice vertex operator algebras and a continuous orbifolding of the rank two fermion vertex operator super algebra. We compute the genus two Heisenberg vector n-point function and show that the Virasoro vector one point function satisfies a genus two Ward identity for these theories.

References

  1. B1.
    Borcherds R.E.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Nat. Acad. Sc. 83, 3068–3071 (1986)CrossRefMathSciNetADSGoogle Scholar
  2. B2.
    Borcherds R.E.: Monstrous moonshine and monstrous Lie superalgebras. Inv. Math. 109, 405–444 (1992)MATHCrossRefMathSciNetADSGoogle Scholar
  3. BK.
    Belavin A., Knizhnik V.: Algebraic geometry and the geometry of strings. Phys. Lett. 168B, 201–206 (1986)MathSciNetADSGoogle Scholar
  4. BPZ.
    Belavin A., Polyakov A., Zamolodchikov A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B241, 333–380 (1984)CrossRefMathSciNetADSGoogle Scholar
  5. CN.
    Conway J.H., Norton S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 12, 308–339 (1979)CrossRefMathSciNetGoogle Scholar
  6. DFMS.
    Di Francesco P., Mathieu P., Senechal D.: Conformal Field Theory. Springer-Verlag, New York (1997)MATHGoogle Scholar
  7. DGM.
    Dolan L., Goddard P., Montague P.: Conformal field theories, representations and lattice constructions. Commun. Math. Phys. 179, 61–120 (1996)MATHCrossRefMathSciNetADSGoogle Scholar
  8. DM.
    Dong C., Mason G.: Shifted vertex operator algebras. Proc. Camb. Phil. Math. Soc. 141, 67–80 (2006)MATHCrossRefMathSciNetGoogle Scholar
  9. DP.
    D’Hoker E., Phong D.H.: The geometry of string perturbation theory. Rev. Mod. Phys. 60, 917–1065 (1988)CrossRefMathSciNetADSGoogle Scholar
  10. EO.
    Eguchi T., Ooguri H.: Conformal and current algebras on a general Riemann surface. Nucl. Phys. B 282, 308–328 (1987)CrossRefMathSciNetADSGoogle Scholar
  11. Fa.
    Fay, J.: Theta functions on Riemann surfaces, Lecture Notes in Mathematics 352, Berlin-New York: Springer-Verlag, 1973Google Scholar
  12. FHL.
    Frenkel, I., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (1993)Google Scholar
  13. FK.
    Farkas H.M., Kra I.: Riemann surfaces. Springer-Verlag, New York (1980)MATHGoogle Scholar
  14. FLM.
    Frenkel I., Lepowsky J., Meurman A.: Vertex operator algebras and the Monster. Academic Press, New York (1988)MATHGoogle Scholar
  15. Fr.
    Freitag E.: Siegelische modulfunktionen. Springer-Verlag, Berlin and New York (1983)Google Scholar
  16. FS.
    Freidan D., Shenker S.: The analytic geometry of two dimensional conformal field theory. Nucl. Phys. B281, 509–545 (1987)CrossRefADSGoogle Scholar
  17. GG.
    Gaberdiel M., Goddard P.: Axiomatic conformal field theory. Commun. Math. Phys. 209, 549–594 (2000)MATHCrossRefMathSciNetADSGoogle Scholar
  18. GSW.
    Green M., Schwartz J., Witten E.: Superstring theory Vol. 1. Cambridge University Press, Cambridge (1987)Google Scholar
  19. Gu.
    Gunning R.C.: Lectures on Riemann surfaces. Princeton Univ. Press, Princeton, NJ (1966)MATHGoogle Scholar
  20. Ka.
    Kac, V.: Vertex operator algebras for beginners. University Lecture Series, Vol. 10, Providence, RI: Amer. Math. Soc., 1998Google Scholar
  21. Kn.
    Knizhnik V.G.: Multiloop amplitudes in the theory of quantum strings and complex geometry. Sov. Phys. Usp. 32, 945–971 (1989)CrossRefMathSciNetADSGoogle Scholar
  22. KNTY.
    Kawamoto N., Namikawa Y., Tsuchiya A., Yamada Y.: Geometric realization of conformal field theory on Riemann surfaces. Commun. Math. Phys. 116, 247–308 (1988)MATHCrossRefMathSciNetADSGoogle Scholar
  23. KZ.
    Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: The Moduli Space of Curves (Texel Island, 1994), Progr. in Math. 129, Boston: Birkhauser, 1995Google Scholar
  24. Li.
    Li H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure. Appl. Alg. 96, 279–297 (1994)MATHCrossRefGoogle Scholar
  25. LL.
    Lepowsky J., Li H.: Introduction to vertex operator algebras and their representations. Birkhäuser, Boston (2004)MATHGoogle Scholar
  26. MN.
    Matsuo, A., Nagatomo, K,: Axioms for a vertex algebra and the locality of quantum fields. Math. Soc. Jap. Mem. 4 (1999)Google Scholar
  27. MT1.
    Mason G., Tuite M.P.: Torus chiral n-point functions for free boson and lattice vertex operator algebras. Commun. Math. Phys. 235, 47–68 (2003)MATHCrossRefMathSciNetADSGoogle Scholar
  28. MT2.
    Mason G., Tuite M.P.: On genus two Riemann surfaces formed from sewn tori. Commun. Math. Phys. 270, 587–634 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  29. MT3.
    Mason, G., Tuite, M.P.: Partition functions and chiral algebras. In: Lie algebras, vertex operator algebras and their applications (in honor of Jim Lepowsky and Robert L. Wilson), Contemporary Mathematics 442, Providence, RI: Amer. Math. Soc., 2007, pp. 401–410Google Scholar
  30. MT4.
    Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces II. to appearGoogle Scholar
  31. MT5.
    Mason, G., Tuite, M.P.: In preparationGoogle Scholar
  32. MT6.
    Mason, G., Tuite, M.P.: Vertex operators and modular forms. In: Kirsten, K., Williams, F. (eds.) A Window into Zeta and Modular Physics, vol. 57, pp. 183–278. MSRI Publications, Cambridge University Press, Cambridge (2010)Google Scholar
  33. MTZ.
    Mason G., Tuite M.P., Zuevsky A.: Torus n-point functions for \({\mathbb{R}}\)-graded vertex operator superalgebras and continuous fermion orbifolds. Commun. Math. Phys. 283, 305–342 (2008)MATHCrossRefMathSciNetADSGoogle Scholar
  34. Mu.
    Mumford D.: Tata lectures on Theta I and II. Birkhäuser, Boston (1983)Google Scholar
  35. P.
    Polchinski J.: String theory. Volume I. Cambridge University Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  36. Se.
    Serre J-P.: A course in arithmetic. Springer-Verlag, Berlin (1978)MATHGoogle Scholar
  37. So1.
    Sonoda H.: Sewing conformal field theories I. Nucl. Phys. B311, 401–416 (1988)CrossRefMathSciNetADSGoogle Scholar
  38. So2.
    Sonoda H.: Sewing conformal field theories II. Nucl. Phys. B311, 417–432 (1988)CrossRefMathSciNetADSGoogle Scholar
  39. T.
    Tuite, M.P.: Genus two meromorphic conformal field theory. CRM Proceedings and Lecture Notes 30, Providence, RI: Amer. Math. Soc., 2001, pp. 231–251Google Scholar
  40. TUY.
    Tsuchiya A., Ueno K., Yamada Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure. Math. 19, 459–566 (1989)MathSciNetGoogle Scholar
  41. TZ.
    Tuite, M.P., Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras I, arXiv:1007.5203Google Scholar
  42. U.
    Ueno, K.: Introduction to conformal field theory with gauge symmetries. In: Geometry and Physics - Proceedings of the conference at Aarhus Univeristy, Aaarhus, Denmark, New York: Marcel Dekker, 1997Google Scholar
  43. Y.
    Yamada A.: Precise variational formulas for abelian differentials. Kodai Math. J. 3, 114–143 (1980)MATHCrossRefMathSciNetGoogle Scholar
  44. Z1.
    Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996)MATHCrossRefMathSciNetGoogle Scholar
  45. Z2.
    Zhu Y.: Global vertex operators on Riemann surfaces. Commun. Math. Phys. 165, 485–531 (1994)MATHCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSanta CruzU.S.A.
  2. 2.School of Mathematics, Statistics and Applied MathematicsNational University of Ireland GalwayGalwayIreland

Personalised recommendations