Communications in Mathematical Physics

, Volume 300, Issue 2, pp 435–486

Quasi-Diffusion in a 3D Supersymmetric Hyperbolic Sigma Model

Open Access


We study a lattice field model which qualitatively reflects the phenomenon of Anderson localization and delocalization for real symmetric band matrices. In this statistical mechanics model, the field takes values in a supermanifold based on the hyperbolic plane. Correlations in this model may be described in terms of a random walk in a highly correlated random environment. We prove that in three or more dimensions the model has a ‘diffusive’ phase at low temperatures. Localization is expected at high temperatures. Our analysis uses estimates on non-uniformly elliptic Green’s functions and a family of Ward identities coming from internal supersymmetry.


  1. 1.
    Berezin, F.A.: Introduction to Superanalysis. Dordrecht: Reidel Publishing Co., 1987Google Scholar
  2. 2.
    Coppersmith, D., Diaconis, P.: Random walk with reinforcement. Unpublished manuscript, 1986Google Scholar
  3. 3.
    Disertori M.: Density of states for GUE through supersymmetric approach. Rev. Math. Phys. 16, 1191–1225 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dupré T.: Localization transition in three dimensions: Monte Carlo simulation of a nonlinear sigma model. Phys. Rev. B 54, 12763–12774 (1996)CrossRefADSGoogle Scholar
  5. 5.
    Drunk W., Fuchs D., Zirnbauer M.R.: Migdal-Kadanoff renormalization of a nonlinear supervector model with hyperbolic symmetry. Ann. Physik 1, 134–150 (1992)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Efetov K.B.: Supersymmetry in Disorder and Chaos. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  7. 7.
    Efetov K.B.: Supersymmetry and theory of disordered metals. Adv. Phys. 32, 874 (1983)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Friedan D.H.: Nonlinear models in 2 + epsilon dimensions. Ann. Phys. 163, 318–419 (1985)MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Fyodorov Y.V.: Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation. Nucl. Phys. B 621, 643–674 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Heinzner P., Huckleberry A., Zirnbauer M.R.: Symmetry classes of disordered fermions. Commun. Math. Phys. 257, 725–771 (2005)MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Littelmann P., Sommers H.-J., Zirnbauer M.R.: Superbosonization of invariant random matrix ensembles. Commun. Math. Phys. 283, 343–395 (2008)MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    McKane A.J., Stone M.: Localization as an alternative to Goldstone theorem. Ann. Phys. 131, 36–55 (1981)CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Merkl F., Rolles S.W.W.: Asymptotic behavior of edge-reinforced random walks. Ann. Prob. 35, 115–140 (2007)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mirlin A.D.: Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep. 326, 260–382 (2000)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Niedermaier M., Seiler E.: Structure of the space of ground states in systems with non-amenable symmetries. Commun. Math. Phys. 270, 373–443 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Duncan A., Niedermaier M., Seiler E.: Vacuum orbit and spontaneous symmetry breaking in hyperbolic sigma-models. Nucl. Phys. B 720, 235–288 (2005)MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Schwarz A., Zaboronsky O.: Supersymmetry and localization. Commun. Math. Phys. 183, 463–476 (1997)MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Spencer T., Zirnbauer M.R.: Spontaneous symmetry breaking of a hyperbolic sigma model in three dimensions. Commun. Math. Phys. 252, 167–187 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Schäfer L., Wegner F.: Disordered system with n orbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes. Z. Phys. B 38, 113–126 (1980)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Wegner F.: The mobility edge problem: continuous symmetry and a conjecture. Z. Phys. B 35, 207–210 (1979)CrossRefADSGoogle Scholar
  21. 21.
    Zirnbauer M.R.: Fourier analysis on a hyperbolic supermanifold with constant curvature. Commun. Math. Phys. 141, 503–522 (1991)MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Raphaël Salem, UMR CNRS 6085Université de RouenSaint-Étienne-du-RouvrayFrance
  2. 2.Institute for Advanced StudyPrincetonUSA
  3. 3.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations