Communications in Mathematical Physics

, Volume 300, Issue 1, pp 147–184 | Cite as

Superconductivity Near the Normal State Under the Action of Electric Currents and Induced Magnetic Fields in \({\mathbb{R}^2}\)



We consider the linearization of the time-dependent Ginzburg-Landau system near the normal state. We assume that an electric current is applied through the sample, which captures the whole plane, inducing thereby, a magnetic field. We show that independently of the current, the normal state is always stable. Using Fourier analysis the detailed behaviour of solutions is obtained as well. Relying on semi-group theory we then obtain the spectral properties of the steady-state elliptic operator.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. Dover, New York (1972)MATHGoogle Scholar
  2. 2.
    Agmon, S.: Lectures on Elliptic Boundary Value Problems. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr., Van Nostrand Mathematical Studies, No. 2, Princeton, NJ-Toronto-London: D. Van Nostrand Co., Inc., 1965Google Scholar
  3. 3.
    Almog Y.: The stability of the normal state of superconductors in the presence of electric currents. SIAM J. Math. Anal. 40, 824–850 (2008)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bauman P., Jadallah H., Phillips D.: Classical solutions to the time-dependent Ginzburg-Landau equations for a bounded superconducting body in a vacuum. J. Math. Phys. 46, 095104 (2005)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. International Series in Pure and Applied Mathematics, New York: McGraw-Hill Book Co., 1978Google Scholar
  6. 6.
    Chapman S.J., Howison S.D., Ockendon J.R.: Macroscopic models for superconductivity. SIAM Review 34, 529–560 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics, Study ed., Berlin: Springer-Verlag, 1987Google Scholar
  8. 8.
    Davies, E.B.: Linear Operators and Their Spectra. Cambridge Studies in Advanced Mathematics, 106 Cambridge: Cambridge University Press, 2007Google Scholar
  9. 9.
    Dolgert A., Blum T., Dorsey A., Fowler M.: Nucleation and growth of the superconducting phase in the presence of a current. Phys. Rev. B 57, 5432–5443 (1998)CrossRefADSGoogle Scholar
  10. 10.
    Du Q., Gunzburger M.D., Peterson J.S.: Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34, 54–81 (1992)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Feynman R.P.: Forces in molecules. Phys. Rev. 56, 340–343 (1939)MATHCrossRefADSGoogle Scholar
  12. 12.
    Fournais S., Helffer B.: Spectral Methods in Surface Superconductivity. Birkhäuser, Basel-Boston (2010)MATHGoogle Scholar
  13. 13.
    Harrell E.M.: On the rate of asymptotic eigenvalue degeneracy. Commun. Math. Phys. 60, 73–95 (1978)MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Harrell E.M.: Double wells. Commun. Math. Phys. 75, 239–261 (1980)MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Helffer B.: The Montgomery model revisited. Colloq. Math. 118, 391–400 (2010)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Helffer, B.: Semi-Classical Analysis for the Schrödinger Operator and Applications. Lecture Notes in Mathematics, 1336, Berlin-Heidelberg-New York: Springer-Verlag, 1988Google Scholar
  17. 17.
    Helffer B., Mohamed A.: Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique. Ann. Inst. Fourier (Grenoble) 38, 95–112 (1988)MATHMathSciNetGoogle Scholar
  18. 18.
    Helffer, B., Nier, F.: Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians. Lectures Notes in Mathematics 1862, Berlin-Heidelberg-New York: Springer, 2005Google Scholar
  19. 19.
    Helffer B., Nourrigat J.: Hypoellipticité Maximale pour des Opérateurs Polynômes de Champs de Vecteurs. Birkhäuser, Basel-Boston (1985)MATHGoogle Scholar
  20. 20.
    Ivlev B.I., Kopnin N.B.: Electric currents and resistive states in thin superconductors. Adv. in Phys. 33, 47–114 (1984)CrossRefADSGoogle Scholar
  21. 21.
    Martinet, J.: Sur les Propriétés Spectrales d’Opérateurs Non auto-adjoints Provenant de la Mécanique des Fluides. PHD Thesis, University of Paris-Sud, 2009Google Scholar
  22. 22.
    Montgomery R.: Hearing the zero locus of a magnetic field. Commun. Math. Phys. 168, 651–675 (1995)MATHCrossRefADSGoogle Scholar
  23. 23.
    Murray, J.D.: Asymptotic Analysis. Springer, 1984Google Scholar
  24. 24.
    Pan X.-B., Kwek K.-H.: Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains. Trans. Amer. Math. Soc. 354, 4201–4227 (2002)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28, Princeton, NJ: Princeton University Press, 1970Google Scholar
  26. 26.
    Simon B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A (N.S.) 38, 295–308 (1983)MATHGoogle Scholar
  27. 27.
    Sivakov A.G., Glukhov A.M., Omelyanchouk A.N., Koval Y., Müller P., Ustinov A.V.: Josephson behavior of phase-slip lines in wide superconducting strips. Phys. Rev. Lett. 91, 267001 (2003)CrossRefADSGoogle Scholar
  28. 28.
    Tinkham M.: Introduction to Superconductivity. McGraw-Hill, New York (1996)Google Scholar
  29. 29.
    Vodolazov D.Y., Peeters F.M., Piraux L., Matefi-Tempfli S., Michotte S.: Current-voltage characteristics of quasi-one-dimensional superconductors: An s-shaped curve in the constant voltage regime. Phys. Rev. Lett. 91, 157001 (2003)CrossRefADSGoogle Scholar
  30. 30.
    Yosida, K.: Functional Analysis. Classics in Mathematics, Berlin: Springer-Verlag, 1980Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsLouisiana State UniversityBaton RougeUSA
  2. 2.Laboratoire de MathématiquesUniv. Paris-Sud et CNRSOrsay CedexFrance
  3. 3.Department of MathematicsEast China Normal UniversityShanghaiP.R. China

Personalised recommendations