Advertisement

Communications in Mathematical Physics

, Volume 299, Issue 3, pp 741–763 | Cite as

Fractional Loop Group and Twisted K-Theory

  • Pedram Hekmati
  • Jouko Mickelsson
Article

Abstract

We study the structure of abelian extensions of the group L q G of q-differentiable loops (in the Sobolev sense), generalizing from the case of the central extension of the smooth loop group. This is motivated by the aim of understanding the problems with current algebras in higher dimensions. Highest weight modules are constructed for the Lie algebra. The construction is extended to the current algebra of the supersymmetric Wess-Zumino-Witten model. An application to the twisted K-theory on G is discussed.

Keywords

Central Extension Verma Module Loop Group Loop Algebra Left Invariant Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carey A.L., Crowley D., Murray M.: Principal bundles and the Dixmier-Douady class. Commun. Math. Phys. 193, 171–196 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Connes A.: Noncommutative Geometry. Academic Press, New York-London (1994)zbMATHGoogle Scholar
  3. 3.
    Freed, D., Hopkins, M., Teleman, C.: Twisted K-theory and Loop Group Representations. http://arxiv.org/abs/math/0312155v2[math.AT], 2005
  4. 4.
    Herrmann R.: Gauge Invariance in Fractional Field Theories. Phys. Lett. A 372, 5515–5522 (2008)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Jaffe A.: Quantum Harmonic Analysis and Geometric Invariants. Adv. Math. 143, 1–110 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kac V.G.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kac V.G., Todorov T.: Superconformal Current Algebras and their Unitary Representations. Commun. Math. Phys. 102, 337–347 (1985)zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Landweber G.: Multiplets of Representations and Kostant’s Dirac Operator for Equal Rank Loop Groups. Duke Math. J. 110(1), 121–160 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lundberg L.-E.: Quasi-free “Second Quantization”. Commun. Math. Phys. 50(2), 103–112 (1976)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Mickelsson J., Rajeev S.: Current Algebras in d + 1 Dimensions and Determinant Bundles over Infinite-Dimensional Grassmannians. Commun. Math. Phys. 112(4), 653–661 (1987)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Mickelsson J.: Current Algebras and Groups. Plenum Press, New York-London (1989)zbMATHGoogle Scholar
  12. 12.
    Mickelsson, J.: Wodzicki Residue and Anomalies of Current Algebras. In: Integrable models and strings (Espoo, 1993), Lecture Notes in Phys., 436, Berlin: Springer, 1994, pp. 123–135Google Scholar
  13. 13.
    Mickelsson, J.: Gerbes, (Twisted) K-theory, and Supersymmetric WZW Model. In: Infinite dimensional groups and manifolds, IRMA Lect. Math. Theor. Phys., 5, Berlin: de Gruyter, 2004, pp. 93–107Google Scholar
  14. 14.
    Milnor J.: On spaces having the homotopy type of a CW complex. Trans. Amer. Math. Soc. 90(2), 272–280 (1959)MathSciNetGoogle Scholar
  15. 15.
    Palais R.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pickrell D.: On the Mickelsson-Faddeev Extension and Unitary Representations. Commun. Math. Phys. 123(4), 617–625 (1989)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Pressley A., Segal G.: Loop Groups. Clarendon Press, Oxford (1986)zbMATHGoogle Scholar
  18. 18.
    Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science Publishers, London (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations