Advertisement

Communications in Mathematical Physics

, Volume 300, Issue 1, pp 47–64 | Cite as

Kontsevich Deformation Quantization and Flat Connections

  • Anton AlekseevEmail author
  • Charles Torossian
Article

Abstract

In Torossian (J Lie Theory 12(2):597–616, 2002), the second author used the Kontsevich deformation quantization technique to define a natural connection ω n on the compactified configuration spaces \({\overline{C}_{n,0}}\) of n points on the upper half-plane. Connections ω n take values in the Lie algebra of derivations of the free Lie algebra with n generators. In this paper, we show that ω n is flat.

The configuration space \({\overline{C}_{n,0}}\) contains a boundary stratum at infinity which coincides with the (compactified) configuration space of n points on the complex plane. When restricted to this stratum, ω n gives rise to a flat connection \({\omega_n^\infty}\). We show that the parallel transport \({\Phi}\) defined by the connection \({\omega_3^\infty}\) between configuration 1(23) and (12)3 verifies axioms of an associator.

We conjecture that \({\omega_n^\infty}\) takes values in the Lie algebra \({\mathfrak{t}_n}\) of infinitesimal braids. If correct, this conjecture implies that \({\Phi \in \exp(\mathfrak{t}_3)}\) is a Drinfeld’s associator. Furthermore, we prove \({\Phi \neq \Phi_{KZ}}\) showing that \({\Phi}\) is a new explicit solution of associator axioms.

Keywords

Real Axis Parallel Transport Star Product Lower Eyelid Boundary Stratum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseev A., Meinrenken E.: On the Kashiwara-Vergne conjecture. Invent. Math. 164(3), 615–634 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Arnal D., Manchon D., Masmoudi M.: Choix des signes pour la formalité de Kontsevich. Pacific J. Math. 203, 23–66 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alekseev, A., Torossian, C.: The Kashiwara-Vergne conjecture and Drinfeld’s associators. http://arxiv.org/abs/0802.4300v1[math.QA], 2008
  4. 4.
    Andler M., Sahi S., Torossian C.: Convolution of invariant distributions: proof of the Kashiwara-Vergne conjecture. Lett. Math. Phys. 69, 177–203 (2004)zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Cattaneo, A.S., Keller, B., Torossian, C., Bruguières, A.: Déformation, quantification, théorie de Lie. Collection Panoramas et Synthèse no. 20, SMF, 2005.Google Scholar
  6. 6.
    Dito G.: Kontsevich star product on the dual of a Lie algebra. Lett. Math. Phys. 48(4), 307–322 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({{\rm Gal}(\overline{Q}/Q)}\). (Russian) Algebra i Analiz 2, no. 4, 149–181 (1990); translation in Leningrad Math. J. 2, no. 4, 829–860 (1991)Google Scholar
  8. 8.
    Felder, G., Willwacher, T.: On the (ir)rationality of Kontsevich weights. http://arxiv.org/abs/0808.2762v2[math.QA], 2008
  9. 9.
    Kashiwara M., Vergne M.: The Campbell-Hausdorff formula and invariant hyperfunctions. Inventiones Math. 47, 249–272 (1978)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Kathotia V.: Kontsevich’s universal formula for deformation quantization and the Campbell-Baker- Hausdorff formula. Internat. J. Math. 11(4), 523–551 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kontsevich M.: Deformation quantization of Poisson manifolds, I. Lett. Math.Phys. 66(3), 157–216 (2003)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Severa, P., Willwacher, T.: Equivalence of formalities of the little discs operad. http://arxiv.org/abs/0905.1789v1[math.QA], 2009
  13. 13.
    Shoikhet B.: Vanishing of the Kontsevich integrals of the wheels. EuroConférence Moshe Flato 2000, Part II (Dijon). Lett. Math. Phys. 56(2), 141–149 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Torossian C.: Sur la conjecture combinatoire de Kashiwara-Vergne. J. Lie Theory 12(2), 597–616 (2002)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Section de MathématiquesUniversité de GenèveGenève 4Switzerland
  2. 2.Institut Mathématiques de JussieuUniversité Paris 7, CNRSParisFrance

Personalised recommendations