Kontsevich Deformation Quantization and Flat Connections
- 202 Downloads
- 9 Citations
Abstract
In Torossian (J Lie Theory 12(2):597–616, 2002), the second author used the Kontsevich deformation quantization technique to define a natural connection ω n on the compactified configuration spaces \({\overline{C}_{n,0}}\) of n points on the upper half-plane. Connections ω n take values in the Lie algebra of derivations of the free Lie algebra with n generators. In this paper, we show that ω n is flat.
The configuration space \({\overline{C}_{n,0}}\) contains a boundary stratum at infinity which coincides with the (compactified) configuration space of n points on the complex plane. When restricted to this stratum, ω n gives rise to a flat connection \({\omega_n^\infty}\). We show that the parallel transport \({\Phi}\) defined by the connection \({\omega_3^\infty}\) between configuration 1(23) and (12)3 verifies axioms of an associator.
We conjecture that \({\omega_n^\infty}\) takes values in the Lie algebra \({\mathfrak{t}_n}\) of infinitesimal braids. If correct, this conjecture implies that \({\Phi \in \exp(\mathfrak{t}_3)}\) is a Drinfeld’s associator. Furthermore, we prove \({\Phi \neq \Phi_{KZ}}\) showing that \({\Phi}\) is a new explicit solution of associator axioms.
Keywords
Real Axis Parallel Transport Star Product Lower Eyelid Boundary StratumPreview
Unable to display preview. Download preview PDF.
References
- 1.Alekseev A., Meinrenken E.: On the Kashiwara-Vergne conjecture. Invent. Math. 164(3), 615–634 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
- 2.Arnal D., Manchon D., Masmoudi M.: Choix des signes pour la formalité de Kontsevich. Pacific J. Math. 203, 23–66 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
- 3.Alekseev, A., Torossian, C.: The Kashiwara-Vergne conjecture and Drinfeld’s associators. http://arxiv.org/abs/0802.4300v1[math.QA], 2008
- 4.Andler M., Sahi S., Torossian C.: Convolution of invariant distributions: proof of the Kashiwara-Vergne conjecture. Lett. Math. Phys. 69, 177–203 (2004)zbMATHCrossRefMathSciNetADSGoogle Scholar
- 5.Cattaneo, A.S., Keller, B., Torossian, C., Bruguières, A.: Déformation, quantification, théorie de Lie. Collection Panoramas et Synthèse no. 20, SMF, 2005.Google Scholar
- 6.Dito G.: Kontsevich star product on the dual of a Lie algebra. Lett. Math. Phys. 48(4), 307–322 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
- 7.Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({{\rm Gal}(\overline{Q}/Q)}\). (Russian) Algebra i Analiz 2, no. 4, 149–181 (1990); translation in Leningrad Math. J. 2, no. 4, 829–860 (1991)Google Scholar
- 8.Felder, G., Willwacher, T.: On the (ir)rationality of Kontsevich weights. http://arxiv.org/abs/0808.2762v2[math.QA], 2008
- 9.Kashiwara M., Vergne M.: The Campbell-Hausdorff formula and invariant hyperfunctions. Inventiones Math. 47, 249–272 (1978)zbMATHCrossRefMathSciNetADSGoogle Scholar
- 10.Kathotia V.: Kontsevich’s universal formula for deformation quantization and the Campbell-Baker- Hausdorff formula. Internat. J. Math. 11(4), 523–551 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
- 11.Kontsevich M.: Deformation quantization of Poisson manifolds, I. Lett. Math.Phys. 66(3), 157–216 (2003)zbMATHCrossRefMathSciNetADSGoogle Scholar
- 12.Severa, P., Willwacher, T.: Equivalence of formalities of the little discs operad. http://arxiv.org/abs/0905.1789v1[math.QA], 2009
- 13.Shoikhet B.: Vanishing of the Kontsevich integrals of the wheels. EuroConférence Moshe Flato 2000, Part II (Dijon). Lett. Math. Phys. 56(2), 141–149 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
- 14.Torossian C.: Sur la conjecture combinatoire de Kashiwara-Vergne. J. Lie Theory 12(2), 597–616 (2002)zbMATHMathSciNetGoogle Scholar