Communications in Mathematical Physics

, Volume 299, Issue 2, pp 409–446 | Cite as

The Pentagram Map: A Discrete Integrable System

  • Valentin Ovsienko
  • Richard Schwartz
  • Serge Tabachnikov


The pentagram map is a projectively natural transformation defined on (twisted) polygons. A twisted polygon is a map from \({\mathbb Z}\) into \({{\mathbb{RP}}^2}\) that is periodic modulo a projective transformation called the monodromy. We find a Poisson structure on the space of twisted polygons and show that the pentagram map relative to this Poisson structure is completely integrable. For certain families of twisted polygons, such as those we call universally convex, we translate the integrability into a statement about the quasi-periodic motion for the dynamics of the pentagram map. We also explain how the pentagram map, in the continuous limit, corresponds to the classical Boussinesq equation. The Poisson structure we attach to the pentagram map is a discrete version of the first Poisson structure associated with the Boussinesq equation. A research announcement of this work appeared in [16].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler V.E.: Cuttings of polygons. Funct. Anal. Appl. 27, 141–143 (1993)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Adler V.E.: Integrable deformations of a polygon. Phys. D 87, 52–57 (1995)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, 60. New York: Springer-Verlag, 1989Google Scholar
  4. 4.
    Belov A., Chaltikian K.: Lattice analogues of W-algebras and classical integrable equations. Phys. Lett. B 309, 268–274 (1993)MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Bobenko, A., Suris, Yu.: Discrete Differential Geometry: Integrable Structure. Providence, RI: Amer. Math. Soc., 2008Google Scholar
  6. 6.
    Fock V., Goncharov A.: Moduli spaces of convex projective structures on surfaces. Adv. Math. 208, 249–273 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fomin S., Zelevinsky A.: Cluster algebras I: foundations. J. Amer. Math. Soc. 12, 497–529 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Falqui G., Magri F., Tondo G.: Reduction of bi-Hamiltonian systems and the separation of variables: an example from the Boussinesq hierarchy. Theoret. and Math. Phys. 122, 176–192 (2000)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Frenkel E., Reshetikhin N., Semenov-Tian-Shansky M.: Drinfeld-Sokolov reduction for difference operators and deformations of W-algebras. I. The case of Virasoro algebra. Commun. Math. Phys. 192, 605–629 (1998)MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Gekhtman M., Shapiro M., Vainshtein A.: Cluster algebras and Poisson geometry. Mosc. Math. J. 3, 899–934 (2003)MATHMathSciNetGoogle Scholar
  11. 11.
    Henriques A.: A periodicity theorem for the octahedron recurrence. J. Alg. Combin. 26, 1–26 (2007)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hoffmann T., Kutz N.: Discrete curves in CP1 and the Toda lattice. Stud. Appl. Math. 113, 31–55 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Konopelchenko B.G., Schief W.K.: Menelaus’ theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy. J. Phys. A: Math. Gen. 35, 6125–6144 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Marshall I., Semenov-Tian-Shansky M.: Poisson groups and differential Galois theory of Schroedinger Equation on the circle. Commun. Math. Phys 284, 537–552 (2008)MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Motzkin Th.: The pentagon in the projective plane, with a comment on Napiers rule. Bull. Amer. Math. Soc. 52, 985–989 (1945)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ovsienko V., Schwartz R., Tabachnikov S.: Quasiperiodic motion for the pentagram map. Electron. Res. Announc. Math. Sci. 16, 1–8 (2009)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry old and New, from Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics, 165, Cambridge: Cambridge University Press, 2005Google Scholar
  18. 18.
    Robbins D., Rumsey H.: Determinants and alternating sign matrices. Adv. Math. 62, 169–184 (1986)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Schwartz R.: The pentagram map. Experiment. Math. 1, 71–81 (1992)MATHMathSciNetGoogle Scholar
  20. 20.
    Schwartz R.: The pentagram map is recurrent. Experiment. Math. 10, 519–528 (2001)MATHMathSciNetGoogle Scholar
  21. 21.
    Schwartz R.: Discrete monodromy, pentagrams, and the method of condensation. J. of Fixed Point Theory and Appl. 3, 379–409 (2008)MATHCrossRefGoogle Scholar
  22. 22.
    Speyer D.: Perfect matchings and the octahedron recurrence. J. Alg. Combin. 25, 309–348 (2007)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Suris, Yu.: The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Basel: Birkhauser Verlag, 2003Google Scholar
  24. 24.
    Thurston, W.: Three-dimensional Geometry and Topology. Vol. 1, Princeton Mathematical Series, 35, Princeton, NJ: Princeton University Press, 1997Google Scholar
  25. 25.
    Tongas A., Nijhoff F.: The Boussinesq integrable system: compatible lattice and continuum structures. Glasg. Math. J. 47, 205–219 (2005)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Veselov A.: Integrable mappings. Russ. Math. Surv. 46(5), 1–51 (1991)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Weinstein A.: The local structure of Poisson manifolds. J. Diff. Geom. 18, 523–557 (1983)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Valentin Ovsienko
    • 1
  • Richard Schwartz
    • 2
  • Serge Tabachnikov
    • 3
  1. 1.CNRS, Institut Camille Jordan, Université Lyon 1Villeurbanne CedexFrance
  2. 2.Department of MathematicsBrown UniversityProvidenceUSA
  3. 3.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations