Communications in Mathematical Physics

, Volume 297, Issue 3, pp 759–816 | Cite as

On the Fundamental Solution of a Linearized Homogeneous Coagulation Equation

Article

Abstract

We describe the fundamental solution of the equation that is obtained by linearization of the coagulation equation with kernel K(x, y) = (xy)λ/2, around the steady state f(x) = x−(3+λ)/2 with \({\lambda \in (1, 2)}\) . Detailed estimates on its asymptotics are obtained. Some consequences are deduced for the flux properties of the particles distributions described by such models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz M., Stegun I.: Handbook of Mathematical Functions. Dover Publications, Inc., New York (1972)MATHGoogle Scholar
  2. 2.
    Balk, A.M., Zakharov, V.E.: Stability of Weak-Turbulence Kolmogorov Spectra. In: Zakharov, V.E. (ed.), Nonlinear Waves and Weak Turbulence, A. M. S. Translations Series 2, Vol. 182, Providence, RI: Amer. Math. Soc., 1998, pp. 1–81Google Scholar
  3. 3.
    Carr J., da Costa F.P.: Instantaneous gelation in coagulation dynamics. Z. Angew. Math. Phys. 43, 974–983 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    van Dongen P.G.J., Ernst M.H.: Cluster size distribution in irreversible aggregation at large times. J. Phys. A 18, 2779–2793 (1985)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    van Dongen P.G.J., Ernst M.H.: Scaling solutions of Smoluchowski’s coagulation equation. J. Stat. Phys. 50, 295–329 (1988)MATHCrossRefADSGoogle Scholar
  6. 6.
    van Dongen P.G.J.: On the possible occurrence of instantaneous gelation in Smoluchowski’s coagulation equation. J. Phys. A: Math. Gen. 20, 1889–1904 (1987)CrossRefADSGoogle Scholar
  7. 7.
    Dubovski P.B., Stewart I.W.: Existence, Uniqueness and Mass Conservation for the Coagulation- Fragmentation Equation. Math. Meth. Appl. Sciences 19, 571–591 (1996)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Ernst M.H., Ziff R.M., Hendriks E.M.: Coagulation processes with a phase transition. J. Colloid and Interface Sci. 97, 266–277 (1984)CrossRefGoogle Scholar
  9. 9.
    Escobedo M., Mischler S., Perthame B.: Gelation in coagulation and fragmentation models. Commun. Math. Phys. 231(1), 157–188 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Escobedo M., Mischler S., Velázquez J.J.L.: On the fundamental solution of the linearized Uehling-Uhlenbeck equation. Arch. Rat. Mech. Anal. 186, 309–349 (2007)MATHCrossRefGoogle Scholar
  11. 11.
    Escobedo M., Mischler S., Velázquez J.J.L.: Singular Solutions for the Uehling Uhlenbeck Equation. Proc. Roy. Soc. Edinburgh 138A, 67–107 (2008)Google Scholar
  12. 12.
    Escobedo, M., Velázquez, J.J.L.: On a linearized coagulation equation. In preparationGoogle Scholar
  13. 13.
    Leyvraz F.: Scaling Theory and Exactly Solved Models in the Kinetics of Irreversible Aggregation. Phys. Repts. 383(2–3), 95–212 (2003)CrossRefADSGoogle Scholar
  14. 14.
    Leyvraz F., Tschudi H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A 14, 3389–3405 (1981)MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Makino J., Fukushige T., Funato Y., Kokubo E.: On the mass distribution of planetesimals in the early runaway stage. New Astronomy 3, 411–417 (1998)CrossRefADSGoogle Scholar
  16. 16.
    Muskhelishvili, N.I.: Singular Integral Equations. Translated from second edition, Moscow (1946) by J.R.M. Radok. Groningen: Noordhof, 1953Google Scholar
  17. 17.
    Noble B.: Methods based on the Wiener-Hopf Technique. Second edition. Chelsea Publishing Company, New York (1988)Google Scholar
  18. 18.
    Stewart I.W.: On the coagulation-fragmentation equation. Z. Angew. Math. Phys. 41, 917–924 (1990)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Stewart I.W.: Density conservation for a coagulation equation. Z. Angew. Math. Phys. 42, 746–756 (1991)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tanaka H., Inaba S., Nakaza K.: Steady-state size distribution for the self-similar collision cascade. Icarus 123, 450–455 (1996)CrossRefADSGoogle Scholar
  21. 21.
    Wagner W.: Post-gelation behaviour of a spatial coagulation model. Electronic J. Prob. 11, 893–933 (2006)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad del País VascoBilbaoSpain
  2. 2.ICMAT (CSIC-UAM-UC3M-UCM) Facultad de MatemáticasUniversidad ComplutenseMadridSpain

Personalised recommendations