Advertisement

Communications in Mathematical Physics

, Volume 296, Issue 2, pp 429–446 | Cite as

Reducible Connections and Non-local Symmetries of the Self-dual Yang–Mills Equations

  • James D. E. Grant
Article
  • 73 Downloads

Abstract

We construct the most general reducible connection that satisfies the self-dual Yang–Mills equations on a simply-connected, open subset of flat \({\mathbb{R}^4}\). We show how all such connections lie in the orbit of the flat connection on \({\mathbb{R}^4}\) under the action of non-local symmetries of the self-dual Yang–Mills equations. Such connections fit naturally inside a larger class of solutions to the self-dual Yang–Mills equations that are analogous to harmonic maps of finite type.

Keywords

Modulus Space Open Subset Loop Group Coadjoint Orbit Laurent Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.: Geometry on Yang–Mills Fields, Scuola Normale Superiore Pisa, Pisa, 1979Google Scholar
  2. 2.
    Atiyah M.F., Hitchin N.J., Drinfel′d V.G., Manin Y.I.: Construction of instantons. Phys. Lett. A 65, 185–187 (1978)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Atiyah M.F., Hitchin N.J., Singer I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A 362, 425–461 (1978)zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Bergvelt M.J., Guest M.A.: Actions of loop groups on harmonic maps. Trans. Amer. Math. Soc. 326, 861–886 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Burstall, F.E., Pedit, F.: Harmonic maps via Adler-Kostant-Symes theory. In: Harmonic Maps and Integrable Systems, Aspects Math., E23, Braunschweig: Vieweg, 1994, pp. 221–272Google Scholar
  6. 6.
    Burstall F.E., Pedit F.: Dressing orbits of harmonic maps. Duke Math. J. 80, 353–382 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chau L.L., Ge M.L., Sinha A., Wu Y.S.: Hidden-symmetry algebra for the self-dual Yang–Mills equation. Phys. Lett. B 121, 391–396 (1983)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Chau L.L., Ge M.L., Wu Y.S.: Kac–Moody algebra in the self-dual Yang-Mills equation. Phys. Rev. D (3) 25, 1086–1094 (1982)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Chau L.-L., Wu Y.S.: More about hidden-symmetry algebra for the self-dual Yang–Mills system. Phys. Rev. D (3) 26, 3581–3592 (1982)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Crane L.: Action of the loop group on the self-dual Yang–Mills equation. Commun. Math. Phys. 110, 391–414 (1987)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Donaldson S.K.: An application of gauge theory to four-dimensional topology. J. Diff. Geom. 18, 279–315 (1983)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Freed, D.S., Uhlenbeck, K.K.: Instantons and Four-Manifolds, Vol. 1 of Mathematical Sciences Research Institute Publications, New York: Springer-Verlag, Second ed., 1991Google Scholar
  13. 13.
    Grant, J.D.E.: The ADHM construction and non-local symmetries of the self-dual Yang–Mills equations. Commun. Math. phys. doi: 10.1007/s00220-010-1024-9
  14. 14.
    Guest M.A.: Harmonic Maps, Loop Groups, and Integrable Systems, Vol. 38 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1997)Google Scholar
  15. 15.
    Guest M.A., Ohnita Y.: Group actions and deformations for harmonic maps. J. Math. Soc. Japan 45, 671–704 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hitchin N.J.: Linear field equations on self-dual spaces. Proc. Roy. Soc. London Ser. A 370, 173–191 (1980)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Ivanova T.A.: On infinite-dimensional algebras of symmetries of the self-dual Yang–Mills equations. J. Math. Phys. 39, 79–87 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Ivanova T.A.: On infinitesimal symmetries of the self-dual Yang–Mills equations. J. Nonlinear Math. Phys. 5, 396–404 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Mason, L.J., Woodhouse, N.M.J.: Integrability, Self-Duality, and Twistor Theory, Vol. 15 of London Mathematical Society Monographs. New Series, New York: The Clarendon Press/Oxford University Press, 1996Google Scholar
  20. 20.
    Park Q.-H.: 2D sigma model approach to 4D instantons. Int. J. Mod. Phys. A 7, 1415–1447 (1992)CrossRefADSGoogle Scholar
  21. 21.
    Plebański J.F.: Some solutions of complex Einstein equations. J. Math. Phys. 16, 2395–2402 (1975)CrossRefADSGoogle Scholar
  22. 22.
    Popov A.D.: Self-dual Yang–Mills: symmetries and moduli space. Rev. Math. Phys. 11, 1091–1149 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pressley A., Segal G.: Loop Groups, Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (1986)Google Scholar
  24. 24.
    Takasaki K.: A new approach to the self-dual Yang–Mills equations. Commun. Math. Phys. 94, 35–59 (1984)zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Uhlenbeck K.: Harmonic maps into Lie groups: classical solutions of the chiral model. J. Diff. Geom. 30, 1–50 (1989)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Uhlenbeck K.K.: Removable singularities in Yang–Mills fields. Commun. Math. Phys. 83, 11–29 (1982)zbMATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Ward R.S.: On self-dual gauge fields. Phys. Lett. A 61, 81–82 (1977)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität WienWienAustria

Personalised recommendations