Advertisement

Communications in Mathematical Physics

, Volume 296, Issue 2, pp 303–321 | Cite as

Interaction of Four Rarefaction Waves in the Bi-Symmetric Class of the Two-Dimensional Euler Equations

  • Jiequan Li
  • Yuxi ZhengEmail author
Article

Abstract

The global existence and structures of solutions to multi-dimensional unsteady compressible Euler equations are interesting and important open problems. In this paper, we construct global classical solutions to the interaction of four orthogonal planar rarefaction waves with two axes of symmetry for the Euler equations in two space dimensions, in the case where the initial rarefaction waves are large. The bi-symmetric initial data is a basic type of four-wave two-dimensional Riemann problems. The solutions in this case are continuous, bounded and self-similar, and we characterize how large the rarefaction waves must be. We use the methods of hodograph transformation, characteristic decomposition, and phase space analysis. We resolve binary interactions of simple waves in the process.

Keywords

Euler Equation Rarefaction Wave Riemann Problem Simple Wave Characteristic Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bang S.: Interaction of three and four rarefaction waves of the pressure-gradient system. J. Diff. Eqs. 246, 453–481 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bressan, A.: Hyperbolic systems of conservation laws. In: The One Dimensional Cauchy Problem. Oxford: Oxford University Press, 2000Google Scholar
  3. 3.
    Chang T., Chen G.Q., Yang S.L.: On the 2–D Riemann problem for the compressible Euler equations, I. Interaction of shock waves and rarefaction waves. Disc. Cont. Dyn. Syst. 1, 555–584 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chang, T., Hsiao, L.: The Riemann Problem and Interaction of Waves in Gas Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, 41, Harlow: Longman Scientific & Technical, 1989Google Scholar
  5. 5.
    Chen, G.-Q., Feldman, M.: Global solutions of shock reflection by large-angle wedges for potential flow. Ann. Math (2), to appear, available at http://pjm.math.berkeley.edu/annals/ta/080510-Chen/080510-Chen-v1.pdf
  6. 6.
    Chen, X., Zheng, Y.: The interaction of rarefaction waves of the two-dimensional Euler equations. Indiana Univ. Math. J. 58(2009), No. 6 (in press)Google Scholar
  7. 7.
    Courant R., Friedrichs K.O.: Supersonic Flow and Shock Waves. Interscience Pulishers, Inc., New York (1948)zbMATHGoogle Scholar
  8. 8.
    Dafermos C.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften. Springer, Berlin-Hidelberg-NewYork (2000)Google Scholar
  9. 9.
    Dinu, L.F.: Multidimensional Wave-Wave Regular Interactions and Genuine Nonlinearity: Some Remarks. Lecture presented in Loughborough University, UK, 2006-07Google Scholar
  10. 10.
    Glimm G., Ji X., Li J., Li X., Zhang P., Zhang T., Zheng Y.: Transonic shock formation in a rarefaction Riemann problem for the 2-D compressible Euler equations. SIAM J. Appl. Math. 69, 720–742 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kurganov A., Tadmor E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Num. Meth. Part. Diff. Eqs. 18, 584–608 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lax P., Liu X.: Solutions of two–dimensional Riemann problem of gas dynamics by positive schemes. SIAM J. Sci. Compt. 19, 319–340 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    LeFloch, P.G.: Hyperbolic Systems of Conservation Laws, The Theory of Classical and Non-Classical Shock Waves. Basel: Birkhaüser Verlag, 2002Google Scholar
  14. 14.
    Li J.: On the two-dimensional gas expansion for compressible Euler equations. SIAM J. Appl. Math. 62, 831–852 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Li, J., Zhang, T., Yang, S.: The Two-Dimensional Riemann Problem in Gas Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics 98, Essex: Addison Wesley Longman limited, 1998Google Scholar
  16. 16.
    Li J., Zhang T., Zheng Y.: Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations. Commun. Math. Phys. 267, 1–12 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Li J., Zheng Y.: Interaction of rarefaction waves of the two-dimensional self-similar Euler equations. Arch. Rat. Mech. Anal. 193, 623–657 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Li, M., Zheng, Y.: Semi-hyperbolic patches of solutions of the two-dimensional Euler equations. Preprint, available on requestGoogle Scholar
  19. 19.
    Elling V., Liu T.P.: Supersonic flow on a solid wedge. Comm. Pure Appl. Math. 61, 1331–1481 (2008)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Sciences 53. New York: Springer-Verlag, 1984Google Scholar
  21. 21.
    Pogodin I.A., Suchkov V.A., Ianenko N.N.: On the traveling waves of gas dynamic equations. J. Appl. Math. Mech. 22, 256–267 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schulz–Rinne C.W.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24, 76–88 (1993)zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Schulz–Rinne C.W., Collins J.P., Glaz H.M.: Numerical solution of the Riemann problem for two–dimensional gas dynamics. SIAM J. Sci. Compt. 4, 1394–1414 (1993)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Serre D.: Écoulements de fluides parfaits en deux variables indépendantes de type espace. Réflexion d’un choc plan par un dièdre compressif. Arch. Rat. Mech. Anal. 132, 15–36 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Smoller J.: Shock Waves and Reaction-Diffusion Equations. Springer, Berlin-Heidelberg-NewYork (1983)zbMATHGoogle Scholar
  26. 26.
    Song K., Zheng Y.: Semi-hyperbolic patches of solutions of the pressure gradient system. Disc. Cont. Dyn. Syst. Series A 24, 1365–1380 (2009)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Wang R., Wu Z.: On mixed initial boundary value problem for quasilinear hyperbolic system of partial differential equations in two independent variables (in Chinese). Acta Sci. Natur. Jinlin Univ. 2, 459–502 (1963)Google Scholar
  28. 28.
    Zhang T., Zheng Y.: Conjecture on the structure of solution of the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 21, 593–630 (1990)zbMATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Zhang T., Zheng Y.: Axisymmetric solutions of the Euler equations for polytropic gases. Arch. Rat. Mech. Anal. 142, 253–279 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Zheng, Y.: Systems of Conservation Laws: Two-Dimensional Riemann Problems. Vol. 38, PNLDE, Boston: Birkhäuser, 2001Google Scholar
  31. 31.
    Zheng Y.: Two-dimensional regular shock reflection for the pressure gradient system of conservation laws. Acta Math. Appl. Sin. Engl. Ser. 22, 177–210 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Zheng, Y.: The compressible Euler system in two space dimensions. In: Series of Cont. Appl. Math. Vol. 13, (Shanghai Mathematics Summer School, 2007). G. Q. Chen, T.-T. Li, C. Liu (eds.) Singapore: World Scientific/ Higher Ed. Press, 2008Google Scholar
  33. 33.
    Zheng Y.: Absorption of characteristics by sonic curves of the two-dimensional Euler equations. Disc. Cont. Dyn. Syst. 23, 605–616 (2009)zbMATHCrossRefGoogle Scholar
  34. 34.
    Zheng, Y.: Shock reflection for the Euler system. In: Hyperbolic Problems Theory, Numerics and Applications (Proceedings of the Osaka meeting 2004), Vol. II. Eds. F. Asakura (Chief), H. Aiso, S. Kawashima, A. Matsumura, S. Nishibata, K. Nishihara; Yokohama: Yokohama Publishers, 2006, pp. 425–432Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsCapital Normal UniversityBeijingPeoples Republic of China
  2. 2.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations