Communications in Mathematical Physics

, Volume 296, Issue 2, pp 525–557 | Cite as

Controllability Issues for Continuous-Spectrum Systems and Ensemble Controllability of Bloch Equations

  • Karine Beauchard
  • Jean-Michel Coron
  • Pierre Rouchon
Article

Abstract

We study the controllability of the Bloch equation, for an ensemble of non interacting half-spins, in a static magnetic field, with dispersion in the Larmor frequency. This system may be seen as a prototype for infinite dimensional bilinear systems with continuous spectrum, whose controllability is not well understood. We provide several mathematical answers, with discrimination between approximate and exact controllability, and between finite time or infinite time controllability: this system is not exactly controllable in finite time T with bounded controls in L2(0, T), but it is approximately controllable in L in finite time with unbounded controls in \({L^{\infty}_{loc}([0,+\infty))}\). Moreover, we propose explicit controls realizing the asymptotic exact controllability to a uniform state of spin + 1/2 or −1/2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball J.M., Marsden J.E., Slemrod M.: Controllability for distributed bilinear systems. SIAM J. Control Optim. 20(4), 575–597 (1982)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beauchard K.: Local controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84, 851–956 (2005)MATHMathSciNetGoogle Scholar
  3. 3.
    Beauchard K.: Local controllability of a 1D beam equation. SIAM J. Control Optim. 47(3), 1219–1273 (2008)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Beauchard K., Coron J.-M.: Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232(2), 328–389 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chambrion T., Mason P., Sigalotti M., Boscain U.: Controllability of the discrete-spectrum Schrödinger equation driven by an external field. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 329–349 (2009)MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Coron J.-M.: Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5(3), 295–312 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Coron J.-M.: On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75(2), 155–188 (1996)MATHMathSciNetGoogle Scholar
  8. 8.
    Coron, J.-M.: Control and Nonlinearity. Mathematical Surveys and Monographs, Vol. 136, Providence, RI: Amer. Math. Soc., 2007Google Scholar
  9. 9.
    Hartman P.: Ordinary Differential Equations. John Wiley and Sons, New York (1964)MATHGoogle Scholar
  10. 10.
    Li, J.-S., Khaneja, N.: Ensemble controllability of the bloch equations. In: Proceedings of the 45th IEEE Conference on Decision & Control, Washington, DC: IEEE Comp. Soc., (San Doego, 2006), pp. 2483–2487, 2006Google Scholar
  11. 11.
    Li J.-S., Khaneja N.: Control of inhomogeneous quantum ensemble. Phys. Rev. A 73, 030302(R) (2006)ADSGoogle Scholar
  12. 12.
    Li, J.-S., Khaneja, N.: Ensemble control of bloch equations. IEEE Trans. Automatic Control, 2009, to appearGoogle Scholar
  13. 13.
    Mirrahimi M.: Lyapunov control of a quantum particle in a decaying potential. Ann. Inst. H. Poincaré - Anal. Non lin. 26(5), 1743–1765 (2009)MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Nersesyan, V.: Growth of Sobolev norms and controllability of Schrödinger equations. Preprint 2008, available at http://arxiv.org/abs/0864.3982v2[math.AP], 2008
  15. 15.
    Turinici, G.: On the controllability of bilinear quantum systems In: C. Le Bris, M. Defranceschi, eds., Mathematical Models and Methods for Ab Initio Quantum Chemistry, Volume 74of Lecture Notes in Chemistry, Berlin-Heideelberg-NewYork: Springer, 2000Google Scholar
  16. 16.
    Turinici G., Rabitz H.: Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules. Phys. Rev. A 70, 063412 (2004)CrossRefADSGoogle Scholar
  17. 17.
    Zeidler, E.: Nonlinear Functional Analysis and it’s Applications, Vol. 4: Applications to mathematical physics. New York: Springer, 1988Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Karine Beauchard
    • 1
  • Jean-Michel Coron
    • 2
  • Pierre Rouchon
    • 3
  1. 1.CMLA, ENS Cachan, CNRSUniversudCachanFrance
  2. 2.Institut Universitaire de France and Université Pierre et Marie Curie-Paris 6UMR 7598 Laboratoire Jacques-Louis LionsParisFrance
  3. 3.Mines ParisTech, Centre Automatique et SystèmesMathématiques et SystèmesParis CEDEXFrance

Personalised recommendations