Advertisement

Communications in Mathematical Physics

, Volume 296, Issue 1, pp 111–143 | Cite as

Comments on Hastings’ Additivity Counterexamples

  • Motohisa Fukuda
  • Christopher King
  • David K. Moser
Article

Abstract

Hastings [12] recently provided a proof of the existence of channels which violate the additivity conjecture for minimal output entropy. In this paper we present an expanded version of Hastings’ proof. In addition to a careful elucidation of the details of the proof, we also present bounds for the minimal dimensions needed to obtain a counterexample.

Keywords

Quantum Channel Input State Random State Partial Isometry Output Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amosov G.G.: Remark on the additivity conjecture for the quantum depolarizing channel. Probl. Inf. Trans. 42(2), 69–76 (2006)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Amosov, G.G.: The strong superadditivity conjecture holds for the quantum depolarizing channel in any dimension. Phys. Rev. A 75(6), P. 060304 (2007)Google Scholar
  3. 3.
    Amosov G.G., Holevo A.S., Werner R.F.: On some additivity problems in quantum information theory. Prob. Inf. Trans. 36, 305–313 (2000)MATHGoogle Scholar
  4. 4.
    Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics 169, Berlin-Heidelberg-NewYork: Springer, 1997Google Scholar
  5. 5.
    Bronk B.V.: Exponential ensemble for random matrices. J. Math. Phys. 6, 228 (1965)CrossRefADSGoogle Scholar
  6. 6.
    Bruss D., Faoro L., Macchiavello C., Palma M.: Quantum entanglement and classical communication through a depolarising channel. J. Mod. Opt. 47, 325 (2000)MathSciNetADSGoogle Scholar
  7. 7.
    Cover T.M., Thomas J.A.: Elements of Information Theory. NewYork, John Wiley and Sons (1991)MATHCrossRefGoogle Scholar
  8. 8.
    Cubitt T., Harrow A.W., Leung D., Montanaro A., Winter A.: Counterexamples to additivity of minimum output p-Renyi entropy for p close to 0. Commun. Math. Phys. 284, 281–290 (2008)MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Fujiwara A., Hashizume T.: Additivity of the capacity of depolarizing channels. Phys. Lett. A 299, 469–475 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Fukuda M.: Simplification of additivity conjecture in quantum information theory. Quant. Info. Proc. 6, 179–186 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fukuda M., Wolf M.M.: Simplifying additivity problems using direct sum constructions. J. Math. Phys. 48, 072101 (2007)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Hastings M.B.: A Counterexample to additivity of minimum output entropy. Nature Physics 5, 255–257 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265(1), 95–117 (2006)MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Hayden P., Winter A.: Counterexamples to the maximal p-norm multiplicativity conjecture for all p >  1. Commun. Math. Phys. 284(1), 263–280 (2008)MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Holevo A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44(1), 269–273 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Holevo A.S.: On complementary channels and the additivity problem. Prob. Th. and Appl. 51, 133–143 (2005)Google Scholar
  17. 17.
    King C.: Additivity for unital qubit channels. J. Math. Phys. 43, 4641–4653 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    King C.: The capacity of the quantum depolarizing channel. IEEE Trans. Info. Theory 49, 221–229 (2003)MATHCrossRefGoogle Scholar
  19. 19.
    King C., Nathanson M., Ruskai M.B.: Multiplicativity properties of entrywise positive maps. Lin. Alg. Appl. 404, 367–379 (2005)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    King C., Ruskai M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Info. Theory 47, 192–209 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lloyd S., Pagels H.: Complexity as thermodynamic depth. Ann. Phys. 188, 186–213 (1988)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    King C., Matsumoto K., Nathanson M., Ruskai M.B.: Properties of conjugate channels with applications to additivity and multiplicativity. Markov Processes and Related Fields 13(2), 391–423 (2007)MATHMathSciNetGoogle Scholar
  23. 23.
    Page D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993)MATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Sanchez-Ruiz J.: Simple proof of pages conjecture on the average entropy of a subsystem. Phys. Rev. E 52, 5653 (1995)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)CrossRefADSGoogle Scholar
  26. 26.
    Sen S.: Average entropy of a quantum subsystem. Phys. Rev. Lett. 77(1), 13 (1996)CrossRefADSGoogle Scholar
  27. 27.
    Shor P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246(3), 453–472 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Werner R.F., Holevo A.S.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43(9), 4353–4357 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Zyczkowski K., Sommers H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A 34, 7111–7125 (2001)MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Motohisa Fukuda
    • 1
  • Christopher King
    • 2
  • David K. Moser
    • 3
  1. 1.Department of MathematicsUniversity of CaliforniaDavisUSA
  2. 2.Department of MathematicsNortheastern UniversityBostonUSA
  3. 3.Department of PhysicsNortheastern UniversityBostonUSA

Personalised recommendations