Advertisement

Communications in Mathematical Physics

, Volume 296, Issue 1, pp 69–88 | Cite as

A Characterization of Vertex Operator Algebra \({L(\frac{1}{2},0)\otimes L(\frac{1}{2},0)}\)

  • Chongying Dong
  • Cuipo Jiang
Open Access
Article

Abstract

We study a simple, rational and C 2-cofinite vertex operator algebra whose weight 1 subspace is zero, the dimension of weight 2 subspace is greater than or equal to 2 and with c = c̃ = 1. Under some additional conditions it is shown that such a vertex operator algebra is isomorphic to \({L(\frac{1}{2},0)\otimes L(\frac{1}{2},0)}\).

Keywords

Vertex Operator Fusion Rule Vertex Operator Algebra Verma Module Irreducible Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. B.
    Borcherds R.: Vertex algebras Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)CrossRefMathSciNetADSGoogle Scholar
  2. D.
    Dong C.: Vertex algebras associated with even lattices. J. Algebra 160, 245–265 (1993)CrossRefGoogle Scholar
  3. DG.
    Dong C., Griess R. Jr: Rank one lattice type vertex operator algebras and their automorphism groups. J. Algebra 208, 262–275 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. DGH.
    Dong C., Griess R. Jr, Hoehn G.: Framed vertex operator algebras, codes and the moonshine module. Commu. Math. Phys. 193, 407–448 (1998)zbMATHCrossRefADSGoogle Scholar
  5. DGL.
    Dong C., Griess R. Jr, Lam C.: Uniqueness results of the moonshine vertex operator algebra. Ameri. J. Math. 129, 583–609 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. DL.
    Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math. Vol. 112, Boston: Birkhäuser, 1993Google Scholar
  7. DLM1.
    Dong C., Li H., Mason G.: Regularity of rational vertex operator algebras. Adv. in Math. 132, 148–166 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. DLM2.
    Dong C., Li H., Mason G.: Twisted representations of vertex operator algebras. Math. Ann. 310, 571–600 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. DLM3.
    Dong C., Li H., Mason G.: Modular invariance of trace functions in orbifold theory and generalized moonshine. Commu. Math. Phys. 214, 1–56 (2000)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. DLiM.
    Dong, C., Lin, Z., Mason, G.: On vertex operator algebras as sl 2-modules. In: Groups, Difference Sets, and the Monster, Proc. of a Special Research Quarter at The Ohio State University, Spring 1993, ed. by Arasu, K.T., Dillon, J.F., Harada, K., Sehgal, S., Solomon, R., Berlin-New York: Walter de Gruyter, 1996, pp. 349–362Google Scholar
  11. DM1.
    Dong C., Mason G.: Rational vertex operator algebras and the effective central charge. International Math. Research Notices 56, 2989–3008 (2004)CrossRefMathSciNetGoogle Scholar
  12. DM2.
    Dong C., Mason G.: Quantum Galois theory for compact Lie groups. J. Algebra 214, 92–102 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. DMZ.
    Dong C., Mason G., Zhu Y.: Discrete series of the Virasoro algebra and the moonshine module. Proc. Symp. Pure. Math. American Math. Soc. 56(II), 295–316 (1994)MathSciNetGoogle Scholar
  14. FHL.
    Frenkel, I.B., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs American Math. Soc. 104, 1993Google Scholar
  15. FK.
    Frenkel I., Kac V.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math 62, 23–66 (1980)zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. FLM.
    Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Math. Vol. 134, New York-London: Academic Press, 1988Google Scholar
  17. FZ.
    Frenkel I., Zhu Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. KR.
    Kac, V.G., Raina, A.: Highest Weight Representations of Infinite Dimensional Lie Algebras. Adv. Ser. In Math. Phys., Singapore: World Scientific, 1987Google Scholar
  19. KL.
    Kawahigashi Y., Longo R.: Local conformal nets arising from framed vertex operator algebras. Adv. Math. 206, 729–751 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. K.
    Kiritsis E.: Proof of the completeness of the classification of rational conformal field theories with c = 1,. Phys. Lett. B 217, 427–430 (1989)CrossRefMathSciNetADSGoogle Scholar
  21. KM.
    Knopp M., Mason G.: On vector-valued modular forms and their Fourier coefficients. Acta Arith. 110, 117–124 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  22. LY.
    Lam, C., Yamauchi, H.: A characterization of the moonshine vertex operator algebra by means of Virasoro frames. Int. Math. Res. Not. 2007 (2007), ID rnm003, 10 ppGoogle Scholar
  23. L1.
    Li H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra 96, 279–297 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  24. L2.
    Li H.: Determining fusion rules by A(V)-modules and bimodules. J. Algebra 212, 515–556 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  25. M.
    Milas A.: Fusion rings for degenerate minimal models. J. Algebra 254, 300–335 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  26. M1.
    Miyamoto M.: Griess algebras and conformal vectors in vertex operator algebras. J. Algebra 179, 523–548 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  27. M2.
    Miyamoto M.: Binary codes and vertex operator superalgebras. J. Algebra 181, 207–222 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  28. M3.
    Miyamoto M.: Representation theory of code vertex operator algebra. J. Algebra 201, 115–150 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  29. M4.
    Miyamoto M.: A new construction of the Moonshine vertex operator algebra over the real number field. Ann. of Math. 159, 535–596 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  30. R.
    Röhrl H.: Finite-dimensional algebras without nilpotents over algebraically closed fields. Arch. Math. 32, 10–12 (1979)zbMATHCrossRefGoogle Scholar
  31. RT.
    Rehern K., Tuneke H.: Fusion rules for the continuum sectors of the Virasoro algebra of c = 1. Lett. Math. Phys. 53, 305–312 (2000)CrossRefMathSciNetGoogle Scholar
  32. W.
    Wang W.: Rationality of Virasoro vertex operator algebras. Internat. Math. Res. Notices 7, 197–211 (1993)CrossRefGoogle Scholar
  33. X.
    Xu F.: Strong additivity and conformal nets. Pacific J. Math. 221, 167–199 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  34. ZD.
    Zhang W., Dong C.: W-algebra W(2,2) and the vertex operator algebra, \({L(\frac{1}{2},0)\otimes L(\frac{1}{2},0)}\). Commun. Math. Phys. 285, 991–1004 (2009)zbMATHCrossRefMathSciNetADSGoogle Scholar
  35. Z.
    Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSanta CruzUSA
  2. 2.School of MathematicsSichuan UniversityChengduChina
  3. 3.Department of MathematicsShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations