Advertisement

Remarks on Chern–Simons Invariants

  • Alberto S. Cattaneo
  • Pavel Mnëv
Article

Abstract

The perturbative Chern–Simons theory is studied in a finite-dimensional version or assuming that the propagator satisfies certain properties (as is the case, e.g., with the propagator defined by Axelrod and Singer). It turns out that the effective BV action is a function on cohomology (with shifted degrees) that solves the quantum master equation and is defined modulo certain canonical transformations that can be characterized completely. Out of it one obtains invariants.

Keywords

Effective Action Canonical Transformation Feynman Graph Ghost Number Simons Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adams D.H.: A note on the Faddeev–Popov determinant and Chern–Simons perturbation theory. Lett. Math. Phys. 42, 205–214 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Axelrod, S., Singer, I.M.: Chern–Simons perturbation theory. In: Proceedings of the XXth DGM Conference, ed. S. Catto, A. Rocha, Singapore: World Scientific, 1992, pp. 3–45; “Chern–Simons perturbation theory. II.” J. Diff. Geom. 39, 173–213 (1994)Google Scholar
  3. 3.
    Bott R., Cattaneo A.S.: Integral invariants of 3-manifolds. J. Diff. Geom. 48, 91–133 (1998)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bott R., Taubes C.: On the self-linking of knots. J. Math. Phys. 35, 5247–5287 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Cattaneo, A.S.: Configuration space integrals and invariants for 3-manifolds and knots. In: Low Dimensional Topology, ed. H. Nencka, Cont. Math. 233, Providence, RI: Amer. Math. Soc., 1999, pp. 153–165Google Scholar
  6. 6.
    Cattaneo, A.S., Felder, G.: Effective Batalin–Vilkovisky theories, equivariant configuration spaces and cyclic chains. http://arXiv.org/abs/0802.1706v1[math-ph], 2008
  7. 7.
    Costello, K.J.: Renormalisation and the Batalin–Vilkovisky formalism. http://arXiv.org/abs/0706.1533v3[math.QA], 2007
  8. 8.
    Fulton W., MacPherson R.: A compactification of configuration spaces. Ann. Math. 139, 183–225 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gugenheim V.K.A.M., Lambe L.A.: Perturbation theory in differential homological algebra I. Illinois J. Math. 33(4), 566–582 (1989)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Iacovino, V.: Master equation and perturbative Chern–Simons theory. http://arXiv.org/abs/0811.2181v1[math.DG], 2008
  11. 11.
    Kontsevich, M.: Feynman diagrams and low-dimensional topology. First European Congress of Mathematics, Paris 1992, Volume II, Progress in Mathematics 120, Basel-Boston: Birkhäuser, 1994, pp. 97–121Google Scholar
  12. 12.
    Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic Geometry and Mirror Symmetry, Seoul 2000, River Edge, NJ: World Sci. Publ., 2001, pp. 203–263Google Scholar
  13. 13.
    Kuperberg, G., Thurston, D.P.: Perturbative 3-manifold invariants by cut-and-paste topology. http://arXiv.org/abs/math/9912167v2[math.GT], 2000
  14. 14.
    Losev, A.: BV Formalism and Quantum Homotopical Structures. Lectures at GAP3, Perugia, 2006Google Scholar
  15. 15.
    Mnev P.: Notes on simplicial BF theory. Moscow Math. J. 9(2), 371–410 (2009)Google Scholar
  16. 16.
    Mnev, P.: Discrete BF Theory. http://arXiv.org/abs/0809.1160v2[hep-th], 2008
  17. 17.
    Schwarz A.: A-model and generalized Chern–Simons theory. Phys. Lett. B 620, 180–186 (2005)CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institut für MathematikUniversität Zürich–IrchelZürichSwitzerland
  2. 2.Petersburg Department of V. A. Steklov Institute of MathematicsSt. PetersburgRussia

Personalised recommendations