Advertisement

Diffraction of Stochastic Point Sets: Explicitly Computable Examples

  • Michael BaakeEmail author
  • Matthias Birkner
  • Robert V. Moody
Article

Abstract

Stochastic point processes relevant to the theory of long-range aperiodic order are considered that display diffraction spectra of mixed type, with special emphasis on explicitly computable cases together with a unified approach of reasonable generality. The latter is based on the classical theory of point processes and the Palm distribution. Several pairs of autocorrelation and diffraction measures are discussed which show a duality structure analogous to that of the Poisson summation formula for lattice Dirac combs.

Keywords

Point Process Random Measure Pure Point Homogeneous Poisson Process Autocorrelation Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ataman Y.: On positive definite measures. Monatsh. Math. 79, 265–272 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baake, M.: Diffraction of weighted lattice subsets. Canad. Math. Bulletin 45, 483–498 (2002), arXiv:math.MG/0106111zbMATHMathSciNetGoogle Scholar
  3. 3.
    Baake, M., Frettlöh, D., Grimm, U.: A radial analogue of Poisson’s summation formula with applications to powder diffraction and pinwheel patterns. J. Geom. Phys. 57, 1331–1343 (2007), arXiv:math.SP/ 0610408zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Baake, M., Höffe, M.: Diffraction of random tilings: Some rigorous results. J. Stat. Phys. 99, 219–261 (2000), arXiv:math-ph/9904005zbMATHCrossRefGoogle Scholar
  5. 5.
    Baake, M., Lenz, D.: Deformation of Delone dynamical systems and pure point diffraction. J. Fourier Anal. Appl. 11, 125–150 (2005), arXiv:math.DS/0404155zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Baake, M., Lenz, D., Moody, R.V.: Characterisation of models sets by dynamical systems. Erg. Th. & Dyn. Syst. 27, 341–382 (2007), arXiv:math.DS/0511648zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Baake, M., Moody, R.V.: Diffractive point sets with entropy. J. Phys. A: Math. Gen. 31, 9023–9038 (1998), arXiv:math-ph/9809002zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Baake, M., Moody, R.V.: Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. (Crelle) 573, 61–94 (2004), arXiv:math.MG/0203030zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Baake, M., Moody, R.V., Pleasants, P.A.B.: Diffraction from visible lattice points and k-th power free integers. Discr. Math. 221, 3–42 (2000), arXiv:math.MG/9906132zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Baake, M., Sing, B.: Diffraction spectrum of lattice gas models above Tc. Lett. Math. Phys. 68, 165–173 (2004), arXiv:math-ph/0405064zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Baake, M., Zint, N.: Absence of singular continuous diffraction for discrete multi-component particle models. J. Stat. Phys. 130, 727–740 (2008), arXiv:0709.2061(math-ph)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Berberian, S.K.: Measure and Integration. New York: Chelsea, 1965zbMATHGoogle Scholar
  13. 13.
    Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Berlin: Springer, 1975zbMATHGoogle Scholar
  14. 14.
    Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York: Academic Press, 1968zbMATHGoogle Scholar
  15. 15.
    Bramson M., Cox J.T., Greven A.: Invariant measures of critical spatial branching processes in high dimensions. Ann. Probab. 25, 56–70 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Córdoba A.: Dirac combs. Lett. Math. Phys. 17, 191–196 (1989)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Cowley, J.M.: Diffraction Physics. 3rd ed., Amsterdam: North-Holland, 1995Google Scholar
  18. 18.
    Daley, D.D., Vere-Jones, D.: An Introduction to the Theory of Point Processes. New York: Springer, 1988zbMATHGoogle Scholar
  19. 19.
    Daley, D.D., Vere-Jones, D.: An Introduction to the Theory of Point Processes I: Elementary Theory and Methods. 2nd ed., 2nd corr. printing, New York: Springer, 2005Google Scholar
  20. 20.
    Daley, D.D., Vere-Jones, D.: An Introduction to the Theory of Point Processes II: General Theory and Structure. 2nd ed., New York: Springer, 2008zbMATHGoogle Scholar
  21. 21.
    Deng, X., Moody, R.V.: Dworkin’s argument revisited: point processes, dynamics, diffraction, and correlations. J. Geom. Phys. 58, 506–541 (2008), arXiv:0712.3287(math.DS)zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Dieudonné, J.: Treatise on Analysis. Vol. II, 2nd ed., New York: Academic Press, 1976zbMATHGoogle Scholar
  23. 23.
    Enter A.C.D., Miȩkisz J.: How should one define a (weak) crystal? J. Stat. Phys. 66, 1147–1153 (1992)zbMATHCrossRefADSGoogle Scholar
  24. 24.
    Etemadi N.: An elementary proof of the strong law of large numbers. Z. Wahrsch. verw. Gebiete 55, 119–122 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed., New York: Wiley, 1972Google Scholar
  26. 26.
    Gil de Lamadrid, J., Argabright, L.N.: Almost Periodic Measures. Memoirs AMS, Vol. 65, no. 428, Providence, RI: Amer. Math. Soc., 1990Google Scholar
  27. 27.
    Gnedenko, B.V.: Theory of Probability. 6th ed., Amsterdam: CRC Press, 1998Google Scholar
  28. 28.
    Goueré, J.-B.: Diffraction and Palm measure of point processes. Comptes Rendus Acad. Sci. (Paris) 342, 141–146 (2003), arXiv:math.PR/0208064Google Scholar
  29. 29.
    Goueré, J.-B.: Quasicrystals and almost periodicity. Commun. Math. Phys. 255, 655–681 (2005), arXiv:math-ph/0212012zbMATHCrossRefADSGoogle Scholar
  30. 30.
    Guinier, A.: X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies. Reprint, New York: Dover, 1994Google Scholar
  31. 31.
    Gorostiza L.G., Wakolbinger A.: Persistence criteria for a class of branching particle systems in continuous time. Ann. Probab. 19, 266–288 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hof A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169, 25–43 (1995)zbMATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Hof A.: Diffraction by aperiodic structures at high temperatures. J. Phys. A: Math. Gen. 28, 57–62 (1995)zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Höffe, M.: Diffraction of the dart-rhombus random tiling. Mat. Science Eng. 294–296, 373–376 (2000), arXiv:math-ph/9911014Google Scholar
  35. 35.
    Höffe, M., Baake, M.: Surprises in diffuse scattering. Z. Kristallogr. 215, 441–444 (2000), arXiv:math-ph/0004022CrossRefGoogle Scholar
  36. 36.
    Kallenberg, O.: Random Measures. 3rd ed., Berlin: Akademie-Verlag, 1983zbMATHGoogle Scholar
  37. 37.
    Karr, A.F.: Point Processes and Their Statistical Inference. 2nd ed., New York: Dekker, 1991zbMATHGoogle Scholar
  38. 38.
    Kerstan, J., Matthes, K., Mecke, J.: Unbegrenzt teilbare Punktprozesse. Berlin: Akademie-Verlag, 1974zbMATHGoogle Scholar
  39. 39.
    Kramer P., Neri R.: On periodic and non-periodic space fillings of \({\mathbb{E}^m}\) obtained by projection. Acta Cryst. A40, 580–587 (1984)MathSciNetGoogle Scholar
  40. 40.
    Külske, C.: Universal bounds on the selfaveraging of random diffraction measures. Probab. Th. Rel. Fields 126, 29–50 (2003), arXiv:math-ph/0109005zbMATHCrossRefGoogle Scholar
  41. 41.
    Külske C.: Concentration inequalities for functions of Gibbs fields with application to diffraction and random Gibbs measures. Commun. Math. Phys. 239, 29–51 (2003)zbMATHCrossRefADSGoogle Scholar
  42. 42.
    Lenz D.: Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks. Commun. Math. Phys. 287, 225–258 (2009), arXiv:math-ph/0608026)zbMATHCrossRefMathSciNetADSGoogle Scholar
  43. 43.
    Lenz D., Strungaru N.: Pure point spectrum for measure dynamical systems on locally compact Abelian groups. J. Math. Pures Appl. 92, 323–341 (2009), arXiv:0704.2498)zbMATHGoogle Scholar
  44. 44.
    Moody, R.V.: Model sets: A survey. In: From Quasicrystals to More Complex Systems, eds. F. Axel, F. Dénoyer, J.P. Gazeau, Les Ulis: EDP Sciences/Berlin: Springer, 2000, pp. 145–166, arXiv:math.MG/ 0002020Google Scholar
  45. 45.
    Moody R.V.: Uniform distribution in model sets. Can. Math. Bull 45, 123–130 (2002)zbMATHMathSciNetGoogle Scholar
  46. 46.
    Nguyen X.X., Zessin H.: Ergodic theorems for spatial processes. Z. Wahrsch. verw. Gebiete 48, 133–158 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Penrose R.: The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, 266–271 (1974)Google Scholar
  48. 48.
    Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. Pacific Grove, CA: Brooks/Cole, 2002Google Scholar
  49. 49.
    Radin, C.: Aperiodic tilings, ergodic theory, and rotations. In: The Mathematics of Long-Range Aperiodic Order, ed. R.V. Moody, NATO-ASI Series C 489, Dordrecht: Kluwer, 1997, pp. 499–519Google Scholar
  50. 50.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. 2nd ed., San Diego: Academic Press, 1980zbMATHGoogle Scholar
  51. 51.
    Rudin, W.: Real and Complex Analysis. 3rd ed., New York: McGraw Hill, 1987zbMATHGoogle Scholar
  52. 52.
    Rudin, W.: Fourier Analysis on Groups. reprint, New York: Wiley, 1990Google Scholar
  53. 53.
    Shechtman D., Blech I., Gratias D., Cahn J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 183–185 (1984)CrossRefGoogle Scholar
  54. 54.
    Schlottmann, M.: Cut-and-project sets in locally compact Abelian groups. In: Quasicrystals and Discrete Geometry. ed. J. Patera, Fields Institute Monographs, Vol. 10, Providence, RI: Amer. Math. Soc., 1998, pp. 247–264Google Scholar
  55. 55.
    Schlottmann, M.: Generalized model sets and dynamical systems. In: Directions in Mathematical Quasicrystals, eds. M. Baake, R.V. Moody, CRM Monograph Series, Vol. 13, Providence, RI: Amer. Math. Soc., 2000, pp. 143–159Google Scholar
  56. 56.
    Steurer W. et al.: What is a crystal? Z. Kristallogr. 222, 308–319 (2007)CrossRefGoogle Scholar
  57. 57.
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. Berlin: Akademie-Verlag, 1987zbMATHGoogle Scholar
  58. 58.
    Stoyan D., Stoyan H.: On one of Matérn’s hard-core point process models. Math. Nachr. 122, 205–214 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Strungaru N.: Almost periodic measures and long-range order in Meyer sets. Discr. Comput. Geom. 33, 483–505 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Urban K., Feuerbacher M.: Structurally complex alloy phases. J. Non-Cryst. Solids 334 & 335, 143–150 (2004)CrossRefGoogle Scholar
  61. 61.
    Ushakov, N.G.: Selected Topics in Characteristic Functions. Utrecht: Brill Academic Publishers, 1999zbMATHGoogle Scholar
  62. 62.
    Walters, P.: An Introduction to Ergodic Theory. reprint, New York: Springer, 2000Google Scholar
  63. 63.
    Welberry, T.R.: Diffuse X-Ray Scattering and Models of Disorder. Oxford: Clarendon Press, 2004Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Michael Baake
    • 1
    Email author
  • Matthias Birkner
    • 2
  • Robert V. Moody
    • 3
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.Institut für MathematikJohannes-Gutenberg-Universität MainzMainzGermany
  3. 3.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada

Personalised recommendations