Focusing Components in Typical Chaotic Billiards Should be Absolutely Focusing

  • Leonid A. Bunimovich
  • Alexander GrigoEmail author


We demonstrate that the defocusing mechanism fails to work if not all focusing components of the boundary are absolutely focusing. More precisely, we construct billiard tables with arbitrary long free path away from a non-absolutely focusing component such that a nonlinearly stable periodic orbit exists. Therefore the only known standard procedure of constructing chaotic ergodic billiards works in general only if all focusing boundary components are absolutely focusing.


Boundary Component Nonlinear Stability Stable Periodic Orbit Billiard Table Birkhoff Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arnol′d, V.I.: Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics. Vol. 60, second ed. New York: Springer-Verlag, 1989Google Scholar
  2. 2.
    Boldrighini C., Keane M., Marchetti F.: Billiards in polygons. Ann. Probab. 6(4), 532–540 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bunimovich L.A.: On ergodic properties of certain billiards. Funk. Anal. i Priložen. 8(3), 73–74 (1974)Google Scholar
  4. 4.
    Bunimovich L.A.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65(3), 295–312 (1979)zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Bunimovich L.A.: Many-dimensional nowhere dispersing billiards with chaotic behavior. Phys. D 33(1–3), 58–64 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bunimovich L.A.: Conditions of stochasticity of two-dimensional billiards. Chaos 1(2), 183–187 (1991)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Bunimovich, L.A.: On absolutely focusing mirrors. In: Ergodic Theory and Related Topics, III (Güstrow, 1990), Lecture Notes in Math., Vol. 1514, Berlin: Springer, 1992, pp. 62–82Google Scholar
  8. 8.
    Bunimovich L.A.: Absolute focusing and ergodicity of billiards. Regul. Chaotic Dyn. 8(1), 15–28 (2003)zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Bunimovich L.A., Del Magno G.: Track billiards. Commun. Math. Phys. 288, 699–713 (2009)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Bussolari L., Lenci M.: Hyperbolic billiards with nearly flat focusing boundaries, I. Physica D 237(18), 2272–2281 (2008)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Chernov, N., Markarian, R.: Chaotic billiards. In: Mathematical Surveys and Monographs. Vol. 127. Providence, RI: Amer. Math. Soc., 2006Google Scholar
  12. 12.
    Del Magno, G., Markarian, R.: On the Bernoulli property of planar hyperbolic billiards, 2006, available at
  13. 13.
    Dias Carneiro M.J., Oliffson Kamphorst S., Pintode Carvalho S.: Elliptic islands in strictly convex billiards. Erg. Th. Dynam. Syst. 23(3), 799–812 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Donnay V.J.: Using integrability to produce chaos: billiards with positive entropy. Commun. Math. Phys. 141(2), 225–257 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Kamphorst S.O., Pinto-de Carvalho S.: The first Birkhoff coefficient and the stability of 2-periodic orbits on billiards. Exp. Math. 14(3), 299–306 (2005)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Lazutkin V.F.: Existence of a continuum of closed invariant curves for a convex billiard. Usp. Mat. Nauk 2(3(165)), 201–202 (1972)MathSciNetGoogle Scholar
  17. 17.
    Lazutkin V.F.: Existence of caustics for the billiard problem in a convex domain. Izv. Akad. Nauk SSSR Ser. Mat. 37, 186–216 (1973)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Markarian R.: Billiards with Pesin region of measure one. Commun. Math. Phys. 118(1), 87–97 (1988)zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton Landmarks in Mathematics. Princeton, NJ: Princeton University Press, 2001, with special emphasis on celestial mechanics, Reprint of the 1973 original, with a foreword by Philip J. HolmesGoogle Scholar
  20. 20.
    Sinaĭ Y.G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Usp. Mat. Nauk 25(2 (152)), 141–192 (1970)zbMATHGoogle Scholar
  21. 21.
    Wojtkowski M.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105(3), 391–414 (1986)zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.ABC Math ProgramGeorgia Institute of TechnologyAtlantaU.S.A
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaU.S.A.

Personalised recommendations