Advertisement

Communications in Mathematical Physics

, Volume 293, Issue 2, pp 519–543 | Cite as

Entire Solutions of Hydrodynamical Equations with Exponential Dissipation

  • Claude Bardos
  • Uriel Frisch
  • Walter Pauls
  • Samriddhi Sankar Ray
  • Edriss S. Titi
Open Access
Article

Abstract

We consider a modification of the three-dimensional Navier–Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as \({{{\rm e}^{|k|/k_{\rm d}}}}\) at high wavenumbers |k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than \({{{\rm e}^{-C(k/k_{\rm d})\,{\rm ln}(|k|/k_{\rm d})}}}\) for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C * = 1/ ln 2. The same behavior with a universal constant C * is conjectured for the Navier–Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier–Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.

Keywords

Entire Function Burger Equation Hydrodynamical Equation High Wavenumbers Entire Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank J.-Z. Zhu and A. Wirth for important input and M. Blank, K. Khanin, B. Khesin and V. Zheligovsky for many remarks. CB acknowledges the warm hospitality of the Weizmann Institute and SSR that of the Observatoire de la Côte d’Azur, places where parts of this work were carried out. The work of EST was supported in part by the NSF grant No. DMS-0708832 and the ISF grant No. 120/06. SSR thanks R. Pandit, D. Mitra and P. Perlekar for useful discussions and acknowledges DST and UGC (India) for support and SERC (IISc) for computational resources. UF, WP and SSR were partially supported by ANR “OTARIE” BLAN07-2_183172 and used the Mésocentre de calcul of the Observatoire de la Côte d’Azur for computations.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press, 2001Google Scholar
  2. 2.
    Frisch U., Matsumoto T., Bec J.: Singularities of Euler flow? Not out of the blue!. J. Stat. Phys. 113, 761–781 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bardos, C., Titi, E.S.: Euler equations of incompressible ideal fluids. Usp. Mat. Nauk 62, 5–46 (2007). English version Russ. Math. Surv. 62, 409–451 (2007)Google Scholar
  4. 4.
    Constantin P.: On the Euler equations of incompressible fluids. Bull. Amer. Math. Soc. 44, 603–621 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Eyink, G., Frisch, U., Moreau, R., Sobolevskiĭ, A.: Proceedings of “Euler Equations: 250 Years On”, (Aussois, June 18–23, 2007), Physica D 237(14–17) (2008)Google Scholar
  6. 6.
    Lions J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Gauthier- Villars, Paris (1969)zbMATHGoogle Scholar
  7. 7.
    Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. Chicago: University of Chicago Press, 1988Google Scholar
  8. 8.
    Fefferman, C.: Existence & smoothness of the Navier–Stokes equation. Millenium problems of the Clay Mathematics Institute (2000). Available at www.claymath.org/millennium/Navier-Stokes_Equations/Official_Problem_Description.pdf
  9. 9.
    Temam, R.: Navier–Stokes Equations. Theory and numerical analysis. Revised edition. With an appendix by F. Thomasset. Published by AMS Bookstore. Providence, RI: Amer. Math. Soc., 2001Google Scholar
  10. 10.
    Sohr H.: The Navier–Stokes Equations. Birkhäuser, Basel (2001)zbMATHGoogle Scholar
  11. 11.
    Brachet M.-E., Meiron D.I., Orszag S.A., Nickel B.G., Morf R.H., Frisch U.: Small-scale structure of the Taylor-Green vortex, J. Fluid Mech. 130, 411–452 (1983)zbMATHCrossRefADSGoogle Scholar
  12. 12.
    von Neumann, J.: Recent theories of turbulence (1949), In: Collected works (1949–1963) 6, ed. A.H. Taub, New York: Pergamon Press, 1963, pp. 37–472Google Scholar
  13. 13.
    Li D., Sinai Ya.G.: Blow-ups of complex solutions of the 3D Navier–Stokes system and renormalization group method. J. Eur. Math. Soc. 10, 267–313 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Oliver M., Titi E.S.: On the domain of analyticity for solutions of second order analytic nonlinear differential equations. J. Diff. Eq. 174, 55–74 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pauls W., Matsumoto T.: Lagrangian singularities of steady two-dimensional flow. Geophys. Astrophys. Fluid. Dyn. 99, 61–75 (2005)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Senouf D., Caflisch R., Ercolani N.: Pole dynamics and oscillation for the complex Burgers equation in the small-dispersion limit. Nonlinearity 9, 1671–1702 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Poláčik, P., Šverák, V.: Zeros of complex caloric functions and singularities of complex viscous Burgers equation. Preprint. 2008, http://arXiv.org/abs/math/0612506v1 [math.AP], 2006
  18. 18.
    Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow (1st ed). Gordon and Breach, New York (1963)Google Scholar
  19. 19.
    Holloway G.: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr. 22, 1033–1046 (1992)CrossRefADSGoogle Scholar
  20. 20.
    Foias C., Temam R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ferrari A., Titi E.S.: Gevrey regularity for nonlinear analytic parabolic equations. Commun. Part. Diff. Eq. 23, 1–16 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Agmon, S.: Lectures on Elliptic Boundary Value Problems. Mathematical Studies, Princeton, NJ: Van Nostrand, 1965Google Scholar
  23. 23.
    Cao C., Rammaha M., Titi E.S.: The Navier–Stokes equations on the rotating 2–D sphere: Gevrey regularity and asymptotic degrees of freedom. Zeits. Ange. Math. Phys. (ZAMP) 50, 341–360 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Doelman A., Titi E.S.: Regularity of solutions and the convergence of the Galerkin method in the Ginzburg–Landau equation. Num. Funct. Anal. Optim. 14, 299–321 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Masuda K.: On the analyticity and the unique continuation theorem for solutions of the Navier–Stokes equation. Proc. Japan Acad. 43, 827–832 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Doering C.R., Titi E.S.: Exponential decay rate of the power spectrum for solutions of the Navier–Stokes equations. Phys. Fluids 7, 1384–1390 (1995)zbMATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Gottlieb D., Orszag S.A.: Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977)zbMATHGoogle Scholar
  28. 28.
    Frisch U., She Z.S., Thual O.: Viscoelastic behaviour of cellular solutions to the Kuramoto-Sivashinsky model. J. Fluid Mech. 168, 221–240 (1986)zbMATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Cox C.M., Matthews P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 76, 430–455 (2002)CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Hoeven J.: On asymptotic extrapolation. J. Symb. Comput. 44, 1000–1016 (2009)zbMATHCrossRefGoogle Scholar
  31. 31.
    Ecalle, J.: Introduction aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac. Actualités mathématiques. Paris: Hermann, 1992Google Scholar
  32. 32.
    van der Hoeven, J.: Transseries and Real Differential Algebra. Lecture Notes in Math. 1888, Berlin: Springer, 2006Google Scholar
  33. 33.
    Pauls W., Frisch U.: A Borel transform method for locating singularities of Taylor and Fourier series. J. Stat. Phys. 127, 1095–1119 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Sinai Ya.G.: Diagrammatic approach to the 3D Navier-Stokes system. Russ. Math. Surv. 60, 849–873 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Caflisch R.E.: Singularity formation for complex solutions of the 3D incompressible Euler equations. Physica D 67, 1–18 (1993)zbMATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Kraichnan R.H.: Intermittency in the very small scales of turbulence. Phys. Fluids 10, 2080–2082 (1967)CrossRefADSGoogle Scholar
  37. 37.
    Frisch U., Morf R.: Intermittency in nonlinear dynamics and singularities at complex times. Phys. Rev. A 10, 2673–2705 (1981)CrossRefADSGoogle Scholar
  38. 38.
    Frisch U., Kurien S., Pandit R., Pauls W., Ray S.S., Wirth A., Zhu J.-Z.: Hyperviscosity, Galerkin truncation and bottlenecks in turbulence. Phys. Rev. Lett. 101, 144501 (2008)CrossRefADSGoogle Scholar
  39. 39.
    Wirth, A. Private communication, 1996Google Scholar
  40. 40.
    Zhu, J.-Z. Private communication, 2008Google Scholar
  41. 41.
    Orszag, S.A. Private communication, 1979Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Claude Bardos
    • 1
  • Uriel Frisch
    • 2
  • Walter Pauls
    • 3
  • Samriddhi Sankar Ray
    • 4
  • Edriss S. Titi
    • 5
    • 6
  1. 1.Université Denis Diderot and Laboratoire J.L. Lions, Université Pierre et Marie CurieParisFrance
  2. 2.UNS, CNRS, Laboratoire Cassiopée, OCANice cedex 4France
  3. 3.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  4. 4.Center for Condensed Matter Theory, Department of PhysicsIndian Institute of ScienceBangaloreIndia
  5. 5.Department of Mathematics and Department of Mechanical and Aerospace EngineeringUniversity of IrvineIrvineUSA
  6. 6.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations