Advertisement

Communications in Mathematical Physics

, Volume 292, Issue 2, pp 343–389 | Cite as

On Classification of Modular Tensor Categories

  • Eric Rowell
  • Richard Stong
  • Zhenghan WangEmail author
Open Access
Article

Abstract

We classify all unitary modular tensor categories (UMTCs) of rank ≤ 4. There are a total of 35 UMTCs of rank ≤ 4 up to ribbon tensor equivalence. Since the distinction between the modular S-matrix S and −S has both topological and physical significance, so in our convention there are a total of 70 UMTCs of rank ≤ 4. In particular, there are two trivial UMTCs with S = (±1). Each such UMTC can be obtained from 10 non-trivial prime UMTCs by direct product, and some symmetry operations. Explicit data of the 10 non-trivial prime UMTCs are given in Sect. 5. Relevance of UMTCs to topological quantum computation and various conjectures are given in Sect. 6.

Keywords

Galois Group Fusion Rule Galois Extension Tensor Category Fusion Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

ZW thanks Nick Read for his insightful Comments on earlier versions.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Ba.
    Bantay P.: The Frobenius-Schur indicator in conformal field theory. Phys. Lett. B 394(1–2), 87–88 (1997)zbMATHADSMathSciNetGoogle Scholar
  2. BM.
    Belov, D., Moore, G.: Classification of spin abelian Chern-Simons theories. http://arxiv.org/abs/hep-th/0505235v1, 2005
  3. BK.
    Bakalov, B., Kirillov, A. Jr.: Lectures on Tensor Categories and Modular Functors. University Lecture Series, Vol. 21, Providence, RI: Amer. Math. Soc., 2001Google Scholar
  4. Br.
    Bruguières A.: Catégories prémodulaires, modularisations et invariants des variétés de dimension 3. (French) Math. Ann. 316(2), 215–236 (2000)zbMATHCrossRefGoogle Scholar
  5. CG.
    Coste A., Gannon T.: Remarks on Galois symmetry in rational conformal field theories. Phys. Lett. B 323(3–4), 316–321 (1994)ADSMathSciNetGoogle Scholar
  6. CP.
    Caselle M., Ponzano G.: Analyticity, modular invariance and the classification of three operator fusion algebras. Phys. Lett. B 242(1), 52–58 (1990)CrossRefADSMathSciNetGoogle Scholar
  7. CZ.
    Cuntz M.: Integral modular data and congruences. J. Alg. Comb. 29(3), 357–387 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  8. dBG.
    de Boer J., Goeree J.: Markov traces and II1 factors in conformal field theory. Commun. Math. Phys. 139(2), 267–304 (1991)zbMATHCrossRefADSGoogle Scholar
  9. DFNSS.
    Das Sarma S., Freedman M., Nayak C., Simon S.H., Stern A.: Non-Abelian Anyons and Topological Quantum Computation. Rev. Mod. Phys. 80, 1083 (2008)CrossRefADSMathSciNetGoogle Scholar
  10. DW.
    Dijkgraaf R., Witten E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129(2), 393–429 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. ENO.
    Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. of Math. (2) 162(2), 581–642 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. EK.
    Evans, D., Kawahigashi, Y.: Quantum Symmetries on Operator Algebras. Oxford Mathematical Monographs. New York: Oxford Science Publications. The Clarendon Press/Oxford University Press, 1998Google Scholar
  13. F.
    Freedman M.H.: P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. USA 95(1), 98–101 (1998)zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. FKLW.
    Freedman M., Kitaev A., Larsen M., Wang Z.: Topological quantum computation. Bull. Amer. Math. Soc. (N.S.) 40(1), 31–38 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. FKW.
    Freedman M.H., Kitaev A., Wang Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227(3), 587–603 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. FLW1.
    Freedman M.H., Larsen M.J., Wang Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227(3), 605–622 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. FLW2.
    Freedman M.H., Larsen M.J., Wang Z.: The two-eigenvalue problem and density of Jones representation of braid groups. Commun. Math. Phys. 228, 177–199 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. FW.
    Freedman M.H., Wang Z.: Large quantum Fourier transforms are never exactly realized by braiding conformal blocks. Phys. Rev. A (3) 75(3), 032322 (2007)CrossRefADSMathSciNetGoogle Scholar
  19. FQ.
    Freed D., Quinn F.: Chern-Simons theory with finite gauge group. Commun. Math. Phys. 156(3), 435–472 (1993)zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. FK.
    Frohlich J., Kerler T.: Quantum Groups, Quantum Categories and Quantum Field Theory. Lecture Notes in Mathematics, 1542. Springer-Verlag, Berlin (1993)Google Scholar
  21. FNTW.
    Fradkin E., Nayak C., Tsvelik A., Wilczek F.: A Chern-Simons Effective Field Theory for the Pfaffian Quantum Hall State. Nucl. Phys. B516, 704–718 (1998)CrossRefADSMathSciNetGoogle Scholar
  22. FTL.
    Feiguin A., Trebst S., Ludwig A.W.W., Troyer M., Kitaev A., Wang Z., Freedman M.: Interacting anyons in topological quantum liquids: The golden chain. Phys. Rev. Lett. 98, 160409 (2007)CrossRefADSGoogle Scholar
  23. G.
    Gannon T.: Modular data: the algebraic combinatorics of conformal field theory. J. Alg. Comb. 22(2), 211–250 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  24. GK.
    Gepner D., Kapustin A.: On the classification of fusion rings. Phys. Lett. B 349(1–2), 71–75 (1995)ADSMathSciNetGoogle Scholar
  25. HH.
    Hagge, T., Hong, S.: Some non-braided fusion categories of rank 3. http://arxiv.org/abs/0704.0208v2[math.GT], 2007
  26. HRW.
    Hong S.-M., Rowell E.C., Wang Z.: On exotic modular tensor categories. Commun. Contemp. Math. 10(Suppl. 1), 1049–1074 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  27. Ki1.
    Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Physics 303(1), 2–30 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. Ki2.
    Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Physics 321(1), 2–111 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. KL.
    Kauffman L., Lins S.: Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds. Ann. Math. Studies, 134. Princeton University Press, Princeton, NJ (1994)Google Scholar
  30. KW.
    Kazhdan, D., Wenzl, H.: Reconstructing monoidal categories. In: I. M. Gelfand Seminar, Adv. Soviet Math. 16, Part 2, Providence, RI: Amer. Math. Soc., 1993, pp. 111–136Google Scholar
  31. LRW.
    Larsen M.J., Rowell E.C., Wang Z.: The N-eigenvalue problem and two applications. Int. Math. Res. Not. 2005(64), 3987–4018 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  32. LWa.
    Larsen M., Wang Z.: Density of the SO(3) TQFT representation of mapping class groups. Commun. Math. Phys. 260(3), 641–658 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. LWe.
    Levin M., Wen X.-G.: String-net condensation: A physical mechanism for topological phases. Phys. Rev. B71, 045110 (2005)ADSGoogle Scholar
  34. Ma.
    Manoliu M.: Abelian Chern-Simons theory. I. a topological quantum field theory. J. Math. Phys. 39(1), 170–206 (1998)zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. M1.
    Müger M.: From subfactor to categories and topology, II. J. Pure Appl. Alg. 180(1–2), 159–219 (2003)zbMATHCrossRefGoogle Scholar
  36. M2.
    Müger M.: On the structure of modular categories. Proc. London Math. Soc. (3) 87(2), 291–308 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  37. MR.
    Moore G., Read N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360(2–3), 362–396 (1991)CrossRefADSMathSciNetGoogle Scholar
  38. MS1.
    Moore, G., Seiberg, N.: Lectures on RCFT. Superstrings ’89 (Trieste, 1989), River Edge, NJ: World Sci. Publ., 1990 pp. 1–129Google Scholar
  39. MS2.
    Moore G., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123(2), 177–254 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar
  40. NR.
    Naidu, D., Rowell, E.C.: A finiteness property for braided fusion categories. http://arxiv.org/abs/0903.4157v1[math.QA], 2009
  41. O1.
    Ostrik V.: Fusion categories of rank 2. Math. Res. Lett. 10(2–3), 177–183 (2003)zbMATHMathSciNetGoogle Scholar
  42. O2.
    Ostrik V.: Pre-modular categories of rank 3. Mosc. Math. J. 8(1), 111–118 (2008)zbMATHMathSciNetGoogle Scholar
  43. P.
  44. Ro1.
    Rowell E.C.: From quantum groups to unitary modular tensor categories. In: Contemp. Math. 413, 215–230 (2006)MathSciNetGoogle Scholar
  45. Tu.
    Turaev V.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics. Berlin, Walter de Gruyter (1994)Google Scholar
  46. TV.
    Turaev V., Viro O.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31(4), 865–902 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  47. TW.
    Tuba I., Wenzl H.: On braided tensor categories of type BCD. J. Reine Angew. Math. 581, 31–69 (2005)zbMATHMathSciNetGoogle Scholar
  48. Wa.
    Wang, Z.: Topologization of electron liquids with Chern-Simons theory and quantum computation. In: Differential Geometry and Physics, Nankai Tracts Math., 10, Hackensack, NJ: World Sci. Publ., 2006 pp. 106–120Google Scholar
  49. Wal.
    Walker, K.: On Witten’s 3-manifold Invariants. 1991 notes at http://canyon23.net/math/
  50. Wen.
    Wen X.-G.: Topological Orders and Edge Excitations in fractional quantum Hall States. Adv. in Phys. 44, 405 (1995)CrossRefADSGoogle Scholar
  51. WW1.
    Wen X.-G., Wang Z.: A classification of symmetric polynomials of infinite variables- a construction of Abelian and non-Abelian quantum Hall states. Phys. Rev. B 77, 235108 (2008)CrossRefADSMathSciNetGoogle Scholar
  52. WW2.
    Wen X.-G., Wang Z.: Topological properties of Abelian and non-Abelian quantum Hall states from the pattern of zeros. Phys. Rev. B 78, 155109 (2008)CrossRefADSMathSciNetGoogle Scholar
  53. Wenz.
    Wenzl H.: C* tensor categories from quantum groups. J. Amer. Math. Soc. 11(2), 261–282 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  54. Wil.
    Wilczek, F.: Fractional Statistics and Anyon Superconductivity, Singapore: World Scientific Pub. Co. Inc., 1990Google Scholar
  55. Witt.
    Witten, E. (1989) The search for higher symmetry in string theory. In: Physics and Mathematics of Strings. Philos. Trans. Roy. Soc. London Ser. A 329(1605), 349–357 (1989)Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of MathematicsTexas A&M UniversityCollege StationU.S.A.
  2. 2.Center for Communications ResearchSan DiegoU.S.A.
  3. 3.Microsoft Station QUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations