Communications in Mathematical Physics

, Volume 294, Issue 1, pp 251–272 | Cite as

The Hermitian Laplace Operator on Nearly Kähler Manifolds

  • Andrei MoroianuEmail author
  • Uwe Semmelmann


The moduli space \({\mathcal {NK}}\) of infinitesimal deformations of a nearly Kähler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1, 1) forms (cf. Moroianu et al. in Pacific J Math 235:57–72, 2008). Using the Hermitian Laplace operator and some representation theory, we compute the space \({\mathcal {NK}}\) on all 6-dimensional homogeneous nearly Kähler manifolds. It turns out that the nearly Kähler structure is rigid except for the flag manifold F(1, 2) = SU3/T 2, which carries an 8-dimensional moduli space of infinitesimal nearly Kähler deformations, modeled on the Lie algebra \({\mathfrak{su}_3}\) of the isometry group.


Manifold Laplace Operator Maximal Torus Twistor Space Killing Spinor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baum H., Friedrich Th., Grunewald R., Kath I.: Twistor and Killing Spinors on Riemannian Manifolds. Teubner–Verlag, Stuttgart–Leipzig (1991)Google Scholar
  2. 2.
    Belgun F., Moroianu A.: Nearly Kähler 6-manifolds with reduced holonomy. Ann. Global Anal. Geom. 19, 307–319 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Besse A.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10. Springer-Verlag, Berlin (1987)Google Scholar
  4. 4.
    Borel A., Hirzebruch F.: Characteristic classes and homogeneous spaces I. 80, 458–538 (1958)MathSciNetGoogle Scholar
  5. 5.
    Butruille J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Global Anal. Geom. 27, 201–225 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cleyton R., Swann A.: Einstein metrics via intrinsic or parallel torsion. Math. Z. 247, 513–528 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Friedrich Th.: Nearly Kähler and nearly parallel G 2-structures on spheres. Arch. Math. (Brno) 42, 241–243 (2006)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Gray A.: The structure of nearly Kähler manifolds. Math. Ann. 223, 233–248 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Moroianu A., Nagy P.-A., Semmelmann U.: Unit Killing Vector Fields on Nearly Kähler Manifolds. Internat. J. Math. 16, 281–301 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Moroianu A., Nagy P.-A., Semmelmann U.: Deformations of Nearly Kähler Structures. Pacific J. Math. 235, 57–72 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Moroianu, A., Semmelmann, U.: Infinitesimal Einstein Deformations of Nearly Kähler Metrics. to appear in Trans. Amer. Math. Soc., 2009Google Scholar
  12. 12.
    Nagy P.-A.: Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 3, 481–504 (2002)Google Scholar
  13. 13.
    Wolf J., Gray A.: Homogeneous spaces defined by Lie group automorphisms I, II. J. Differ. Geom. 2, 77–114 (1968) 115–159zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.CMLS, École Polytechnique, UMR 7640 du CNRSPalaiseauFrance
  2. 2.Mathematisches InstitutUniversität zu KölnKölnGermany

Personalised recommendations