Communications in Mathematical Physics

, Volume 291, Issue 3, pp 813–843 | Cite as

Distinguishability of Quantum States Under Restricted Families of Measurements with an Application to Quantum Data Hiding

  • William MatthewsEmail author
  • Stephanie Wehner
  • Andreas Winter


We consider the problem of ambiguous discrimination of two quantum states when we are only allowed to perform a restricted set of measurements. Let the bias of a POVM be defined as the total variational distance between the outcome distributions for the two states to be distinguished. The performance of a set of measurements can then be defined as the ratio of the bias of this POVM and the largest bias achievable by any measurements. We first provide lower bounds on the performance of various POVMs acting on a single system such as the isotropic POVM, and spherical 2 and 4-designs, and show how these bounds can lead to certainty relations. Furthermore, we prove lower bounds for several interesting POVMs acting on multipartite systems, such as the set of local POVMS, POVMs which can be implemented using local operations and classical communication (LOCC), separable POVMs, and finally POVMs for which every bipartition results in a measurement having positive partial transpose (PPT). In particular, our results show that a scheme of Terhal et. al. for hiding data against local operations and classical communication [31] has the best possible dimensional dependence.


Quantum State Convex Body Hermitian Operator Trace Class Operator Bipartite System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fulton W., Harris J.: Representation Theory: A First Course. Springer, Berlin Heidelberg NewYork (1991)zbMATHGoogle Scholar
  2. 2.
    Dudley R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  3. 3.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1997)zbMATHGoogle Scholar
  4. 4.
    Cover T., Thomas J.: Elements of Information Theory (Second Edition). John Wiley and Sons, NewYork (2006)zbMATHGoogle Scholar
  5. 5.
    Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quantum world. In: Proc. 22nd Annual IEEE Conference on Computational Complexity (CCC’07), 129–140, available at, 2007
  6. 6.
    Appleby, D.M., Dang, H.B., Fuchs, C.A.: Physical Significance of Symmetric Informationally-Complete Sets of Quantum States.[quant-ph], 2007
  7. 7.
    Appleby D.M.: SIC-POVMs and the Extended Clifford Group. in J. Math. Phys. 46, 052107 (2005)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Audenaert, K.M.R., Calsamiglia, J., Munoz-Tapia, R., Bagan, E., Masanes, Ll., Acín, A., Verstraete, F.: Discriminating States: The Quantum Chernoff Bound. Phys. Rev. Lett. 98, 160501 (2007); Nussbaum, M., Szkoła, A.: The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Stat. 37, no. 2, 1040–1057 (2009)Google Scholar
  9. 9.
    Ballester, M.A., Wehner, S., Winter, A.: State Discrimination with Post-Measurement Information. In: IEEE Trans. Inf. Theory 54, no. 9, 4183–4198 (2008)Google Scholar
  10. 10.
    Bandyopadhyay S., Boykin P.O., Roychowdhuri V., Vatan F.: A New Proof for the Existence of Mutually Unbiased Bases. Algorithmica 34, 512–528 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bennett C.H., Hayden P., Leung D., Shor P.W., Winter A.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51(1), 56–74 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Berger B.: The Fourth Moment Method. SIAM J. Comput. 24(6), 1188–1207 (1997)CrossRefGoogle Scholar
  13. 13.
    Bolthausen E.: An Estimate of the Remainder in a Combinatorial Central Limit Theorem. Zeits. für Wahrsch. und Verw. Geb. 66, 387–405 (1984)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Eggeling T., Werner R.F.: Hiding Classical Data in Multipartite Quantum States. Phys. Rev. Lett. 89(9), 097905 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Flammia S.: On SIC-POVMs in Prime Dimensions. J. Phys. A. Math. Gen. 39, 10901–10907 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Fuchs C.A., van de Graaf J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999)zbMATHCrossRefGoogle Scholar
  17. 17.
    Grassl M.: On SIC-POVMs and MUBs in Dimension 6. J. Phys. A: Math. Gen. 39, 13483–13493 (2006)CrossRefGoogle Scholar
  18. 18.
    Bennett C., DiVincenzo D., Fuchs C., Mor T., Rains E., Shor P., Smolin J., Wootters W.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070–1091 (1999)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Horodecki M., Horodecki P., Horodecki R.: Separability of Mixed States: Necessary and Sufficient Conditions. Phys. Lett. A 223, 1–8 (1996)zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Gurvits, L., Barnum, H.: Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev. A 66, 062311 (2002); Gurvits, L., Barnum, H.: Separable balls around the maximally mixed multipartite quantum states. Phys. Rev. A 68, 042312 (2003)Google Scholar
  21. 21.
    Hardin R.H., Sloane N.J.A.: McLaren’s Improved Snub Cube and Other New Spherical Designs in Three Dimensions. Discrete and Comput. Geom. 15, 429–441 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hayden P., Leung D., Shor P.W., Winter A.: Randomizing Quantum States: Constructions and Applications. Commun. Math. Phys. 250(2), 371–391 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. New York: Academic Press, (1976); Holevo, A.S.: Statistical decision theory for quantum systems. J. Multivariate Anal. 3(4), 337–394, (1973)Google Scholar
  24. 24.
    Jozsa R., Robb D., Wootters W.K.: Lower bound for accessible information in quantum mechanics. Phys. Rev. A 49(2), 668–677 (1994)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Klappenecker, A., Roetteler, M.: Mutually Unbiased Bases are complex spherical 2-designs. In: Proc. ISIT 2005, Piscataway, NJ: IEEE, 2005, pp. 1740–1744Google Scholar
  26. 26.
    Matthews, W., Winter, A.: On the Chernoff distance for asymptotic LOCC discrimination of bipartite quantum states. Commun. Math. Phys. 285(1), 161–174 (2009);[quant-ph], 2008
  27. 27.
    Penrose R., Rindler W.: Spinors and Space-Time, Vol. 1: Two-spinor calculus and relativistic fields. Cambridge University Press, Cambridge (1986)Google Scholar
  28. 28.
    Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M.: Symmetric Informationally Complete Quantum Measurements. J. Math. Phys. 45, 2171 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Sanchez-Ruiz, J.: Entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 173(3), 233–239 (1993); Improved bounds in the entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 201(2–3), 125–131 (1995)Google Scholar
  30. 30.
    Sen De A., Sen U., Lewenstein M.: Distillation protocols that involve local distinguishing: Composing upper and lower bounds on locally accessible information. Phys. Rev. A 74, 052332 (2006)CrossRefADSGoogle Scholar
  31. 31.
    Terhal, B.M., DiVincenzo, D.P., Leung, D.: Hiding Bits in Bell States. Phys. Rev. Lett. 86(25), 5807–5810 (2001); DiVincenzo, D.P., Leung, D., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–599 (2002)Google Scholar
  32. 32.
    Wootters W.K., Fields B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Zauner, G.: Quantum Designs – Foundations of a Non-Commutative Theory of Designs (in German). Ph.D. thesis, Universität Wien (1999)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • William Matthews
    • 1
    Email author
  • Stephanie Wehner
    • 2
  • Andreas Winter
    • 1
    • 3
  1. 1.Department of MathematicsUniversity of BristolBristolU.K.
  2. 2.Institute for Quantum Information, CaltechPasadenaUSA
  3. 3.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore

Personalised recommendations