Communications in Mathematical Physics

, Volume 291, Issue 1, pp 177–224 | Cite as

The Ginibre Ensemble of Real Random Matrices and its Scaling Limits

  • A. Borodin
  • C. D. SinclairEmail author


We give a closed form for the correlation functions of ensembles of a class of asymmetric real matrices in terms of the Pfaffian of an antisymmetric matrix formed from a 2 × 2 matrix kernel associated to the ensemble. We apply this result to the real Ginibre ensemble and compute the bulk and edge scaling limits of its correlation functions as the size of the matrices becomes large.


Correlation Function Point Process Random Matrix Matrix Kernel Scaling Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akemann G., Kanzieper E.: Integrable structure of Ginibre’s ensemble of real random matrices and a pfaffian integration theorem. J. Stat. Phys. 129, 1159–1231 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bai Z.D.: Circular law. Ann. Probab. 25(1), 494–529 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bleher, P., Mallison, R. Jr.: Zeros of sections of exponential sums. Int. Math. Res. Not., Art. ID 38937, 49, pp. (2006)Google Scholar
  4. 4.
    Borodin, A., Olshanski, G.: Representation theory and random point processes. In: European Congress of Mathematics, Zürich: Eur. Math. Soc., 2005, pp. 73–94Google Scholar
  5. 5.
    Carpenter, A.J., Varga, R.S., Waldvogel, J.: Asymptotics for the zeros of the partial sums of e z. I. In Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), Vol. 21, 1991, pp. 99–120Google Scholar
  6. 6.
    Chern S.-J., Vaaler J.D.: The distribution of values of Mahler’s measure. J. Reine Angew. Math. 540, 1–47 (2001)zbMATHMathSciNetGoogle Scholar
  7. 7.
    de Bruijn N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. (N.S.) 19, 133–151 (1956)Google Scholar
  8. 8.
    Edelman A.: The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivariate Anal. 60(2), 203–232 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Edelman A., Kostlan E., Shub M.: How many eigenvalues of a random matrix are real?. J. Amer. Math. Soc. 7(1), 247–267 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Everest G., Ward T.: Heights of Polynomials and Entropy in Algebraic Dynamics. Universitext. Springer-Verlag London Ltd., London (1999)Google Scholar
  11. 11.
    Forrester P.J., Honner G.: Exact statistical properties of the zeros of complex random polynomials. J. Phys. A 32, 2961–2981 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Forrester P., Nagao T.: Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble. J. Phys. A 41, 375003 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Forrester P.J., Nagao T.: Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99, 050603 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Fyodorov Y.V., Sommers H.-J.: Random matrices close to Hermitian or unitary: overview of methods and results. J. Phys. A 36(12), 3303–3347 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Ginibre J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Girko V.L.: The circular law. Teor. Veroyatnost. i Primenen. 29(4), 669–679 (1984)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Guhr T., Mueller-Groeling A., Weidenmueller H.A.: Random matrix theories in quantum physics: Common concepts. Phys. Rep. 299, 189 (1998)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Kanzieper E., Akemann G.: Statistics of real eigenvalues in Ginibre’s ensemble of random real matrices. Phys. Rev. Lett. 95, 230201 (2005)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Lehmann N., Sommers H.-J.: Eigenvalue statistics of random real matrices. Phys. Rev. Lett. 67, 941–944 (1991)zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Mehta, M.L.: Random Matrices. Third ed., Volume 142 of Pure and Applied Mathematics (Amsterdam). Amsterdam: Elsevier/Academic Press, 2004Google Scholar
  21. 21.
    Rains, E.M.: Correlation functions for symmetrized increasing subsequences.[math.Co], 2000
  22. 22.
    Sinclair C.D.: Averages over Ginibre’s ensemble of random real matrices. Int. Math. Res. Not. 2007, 1–15 (2007)Google Scholar
  23. 23.
    Sinclair C.D.: The range of multiplicative functions on \({\mathbb{C}[x], \mathbb{R}[x]}\) and \({\mathbb{Z}[x]}\) . Proc. London Math. Soc. 96(3), 697–737 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sommers H.-J.: Symplectic structure of the real Ginibre ensemble. J. Phys. A 40, F671–676 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Sommers H.-J., Wieczorek W.: General eigenvalue correlations for the real Ginibre ensemble. J. Phys. A 41, 40 (2008)CrossRefGoogle Scholar
  26. 26.
    Stembridge J.R.: Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83(1), 96–131 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Tao T., Vu V.: Random matrices: The circular Law. Commun. Cont. Math. 10, 261–307 (2007)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Temme N.M.: Uniform asymptotic expansions of the incomplete gamma functions and the incomplete beta function. Math. Comp. 29(132), 1109–1114 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tracy C.A., Widom H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92(5–6), 809–835 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Mathematics 253-37California Institute of TechnologyPasadenaUSA
  2. 2.Department of MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations