Ground State Energy of Large Atoms in a Self-Generated Magnetic Field

Article

Abstract

We consider a large atom with nuclear charge Z described by non-relativistic quantum mechanics with classical or quantized electromagnetic field. We prove that the absolute ground state energy, allowing for minimizing over all possible self-generated electromagnetic fields, is given by the non-magnetic Thomas-Fermi theory to leading order in the simultaneous Z → ∞, α → 0 limit if Zα2κ for some universal κ, where α is the fine structure constant.

References

  1. BFG.
    Bugliaro L., Fröhlich J., Graf G.M.: Stability of quantum electrodynamics with nonrelativistic matter. Phys. Rev. Lett. 77, 3494–3497 (1996)CrossRefADSGoogle Scholar
  2. CFKS.
    Cycon H.L., Froese R.G., Kirsch W., Simon B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Springer-Verlag, Berlin-Heidelberg-New York (1987)MATHGoogle Scholar
  3. ES.
    Erdős L., Solovej J.P.: Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates. Commun. Math. Phys. 188, 599–656 (1997)CrossRefADSGoogle Scholar
  4. ES2.
    Erdős L., Solovej J.P.: The kernel of Dirac operators on \({{\mathbb{{S}}^3}}\) and \({{\mathbb{{R} }}^{3}}\) . Rev. Math. Phys. 13, 1247–1280 (2001)CrossRefMathSciNetGoogle Scholar
  5. F.
    Fefferman C.: Stability of Coulomb systems in a magnetic field. Proc. Nat. Acad. Sci. USA 92, 5006–5007 (1995)MATHCrossRefMathSciNetADSGoogle Scholar
  6. FLL.
    Fröhlich J., Lieb E.H., Loss M.: Stability of Coulomb systems with magnetic fields. I. The one-electron atom. Commun. Math. Phys. 104, 251–270 (1986)MATHCrossRefADSGoogle Scholar
  7. FS.
    Fefferman C., Seco L.A.: On the energy of a large atom. Bull. AMS 23(2), 525–530 (1990)MATHCrossRefMathSciNetGoogle Scholar
  8. H.
    Hughes W.: An atomic energy bound that gives Scott’s correction. Adv. Math. 79, 213–270 (1990)MATHCrossRefMathSciNetGoogle Scholar
  9. IS.
    Ivrii V.I., Sigal I.M.: Asymptotics of the ground state energies of large Coulomb systems. Ann. of Math. (2) 138, 243–335 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. L.
    Lieb E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 65(4), 603–641 (1981)CrossRefMathSciNetADSGoogle Scholar
  11. LL.
    Lieb E.H., Loss M.: Stability of Coulomb systems with magnetic fields. II. The many-electron atom and the one-electron molecule. Commun. Math. Phys. 104, 271–282 (1986)MATHCrossRefMathSciNetADSGoogle Scholar
  12. LLS.
    Lieb E.H., Loss M., Solovej J.P.: Stability of Matter in Magnetic Fields. Phys. Rev. Lett. 75, 985–989 (1995)MATHCrossRefMathSciNetADSGoogle Scholar
  13. LO.
    Lieb E.H., Oxford S.: Improved Lower Bound on the Indirect Coulomb Energy. Int. J. Quant. Chem. 19, 427–439 (1981)CrossRefGoogle Scholar
  14. LS.
    Lieb E.H., Simon B.: The Thomas-Fermi theory of atoms. molecules and solids. Adv. Math. 23, 22–116 (1977)CrossRefMathSciNetGoogle Scholar
  15. LSY1.
    Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band region. Commun. Pure Appl. Math. 47, 513–591 (1994)MATHCrossRefMathSciNetGoogle Scholar
  16. LSY2.
    Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions. Commun. Math. Phys. 161, 77–124 (1994)MATHCrossRefMathSciNetADSGoogle Scholar
  17. LT.
    Lieb, E.H., Thirring, W.: A bound on the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. E. H. Lieb, B. Simon, A. Wightman, eds., Princeton, NJ: Princeton University Press, 1976, pp. 269–303Google Scholar
  18. LY.
    Loss M., Yau H.T.: Stabilty of Coulomb systems with magnetic fields. III. Zero energy bound states of the Pauli operator. Commun. Math. Phys. 104, 283–290 (1986)MATHCrossRefMathSciNetADSGoogle Scholar
  19. SW1.
    Siedentop H., Weikard R.: On the leading energy correction for the statistical model of an atom: interacting case. Commun. Math. Phys. 112, 471–490 (1987)MATHCrossRefMathSciNetADSGoogle Scholar
  20. SW2.
    Siedentop H., Weikard R.: On the leading correction of the Thomas-Fermi model: lower bound. Invent. Math. 97, 159–193 (1990)CrossRefMathSciNetADSGoogle Scholar
  21. SW3.
    Siedentop H., Weikard R.: A new phase space localization technique with application to the sum of negative eigenvalues of Schrödinger operators. Ann. Sci. École Norm. Sup. (4) 24(2), 215–225 (1991)MATHMathSciNetGoogle Scholar
  22. SS.
    Solovej J.P., Spitzer W.L.: A new coherent states approach to semiclassics which gives Scott’s correction. Commun. Math. Phys. 241, 383–420 (2003)MATHMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of MunichMunichGermany
  2. 2.Department of MathematicsUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations