Communications in Mathematical Physics

, Volume 291, Issue 1, pp 31–61 | Cite as

Quantum Fluctuations and Rate of Convergence Towards Mean Field Dynamics

Article

Abstract

The nonlinear Hartree equation describes the macroscopic dynamics of initially factorized N-boson states, in the limit of large N. In this paper we provide estimates on the rate of convergence of the microscopic quantum mechanical evolution towards the limiting Hartree dynamics. More precisely, we prove bounds on the difference between the one-particle density associated with the solution of the N-body Schrödinger equation and the orthogonal projection onto the solution of the Hartree equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. Preprint: Univ. Texas Math. Physics Archive, http://www.ma.utexas.edu, No. 05-211, 2005
  2. 2.
    Bardos C., Golse F., Mauser N.: Weak coupling limit of the N-particle Schrödinger equation. Meth. Appl. Anal. 7, 275–293 (2000)MATHMathSciNetGoogle Scholar
  3. 3.
    Elgart A., Erdős L., Schlein B., Yau H.-T.: Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Rat. Mech. Anal. 179(2), 265–283 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Elgart A., Schlein B.: Mean field dynamics of Boson stars. Commun. Pure Appl. Math. 60(4), 500–545 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. To appear in Ann. of Math. http://arxiv.org/abs/math-ph/0606017v3, 2006
  7. 7.
    Erdős L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)MathSciNetGoogle Scholar
  8. 8.
    Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems. I and II. Commun. Math. Phys. 66, 37–76 (1979), and 68, 45–68 (1979)Google Scholar
  9. 9.
    Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Krasikov I.: Inequalities for Laguerre polynomials. East J. Approx. 11, 257–268 (2005)MATHMathSciNetGoogle Scholar
  11. 11.
    Spohn H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52(3), 569–615 (1980)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Szegö, G.: Orthogonal Polynomials. Colloq. pub. AMS. V. 23, New York: Amer. Math. Soc., 1959Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Institute of MathematicsUniversity of MunichMunichGermany

Personalised recommendations