Advertisement

Communications in Mathematical Physics

, Volume 291, Issue 1, pp 63–110 | Cite as

A Topos for Algebraic Quantum Theory

  • Chris Heunen
  • Nicolaas P. Landsman
  • Bas Spitters
Open Access
Article

Abstract

The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*-algebra of observables A induces a topos \({\mathcal{T}(A)}\) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra \({\underline{A}}\) . According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum \({\underline{\Sigma}(\underline{A})}\) in \({\mathcal{T}(A)}\) , which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on \({\underline{\Sigma}}\) , and self-adjoint elements of A define continuous functions (more precisely, locale maps) from \({\underline{\Sigma}}\) to Scott’s interval domain. Noting that open subsets of \({\underline{\Sigma}(\underline{A})}\) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos \({\mathcal{T}(A)}\).

These results were inspired by the topos-theoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham.

Keywords

Topo Distributive Lattice Quantum Logic Riesz Space Heyting Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors are indebted to Andreas Döring, Ieke Moerdijk, Chris Mulvey, Isar Stubbe, and Steve Vickers for guidance and useful feedback on talks and earlier drafts of this article. We are exceptionally grateful to the referee of this paper for unusually detailed and helpful comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Aarnes J.F.: Quasi-states on C*-algebras. Trans. Amer. Math. Soc. 149, 601–625 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abramsky, S., Jung, A.: Domain theory. In: Handbook for Logic in Computer Science. Volume 3. London: Clarendon Press, 1994Google Scholar
  3. 3.
    Aczel P.: Aspects of general topology in constructive set theory. Ann. Pure Appl. Logic 137, 3–29 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Adelman M., Corbett J.V.: A sheaf model for intuitionistic quantum mechanics. Appl. Categ. Struct. 3, 79–104 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Banaschewski B., Mulvey C.J.: The spectral theory of commutative C*-algebras: the constructive Gelfand-Mazur theorem. Quaest. Math. 23(4), 465–488 (2000)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Banaschewski B., Mulvey C.J.: The spectral theory of commutative C*-algebras: the constructive spectrum. Quaest. Math. 23(4), 425–464 (2000)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Banaschewski B., Mulvey C.J.: A globalisation of the Gelfand duality theorem. Ann. Pure Appl. Logic 137(1–3), 62–103 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Battilotti G., Sambin G.: Pretopologies and uniform presentation of sup-lattices, quantales and frames. Ann. Pure Appl. Logic. 137, 30–61 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bell, J.L.: The development of categorical logic. In: Handbook of Philosophical Logic. Volume 12. Berlin-Heidelberg-New York: Springer, 2005Google Scholar
  10. 10.
    Birkhoff G., von Neumann J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)CrossRefGoogle Scholar
  11. 11.
    Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Albert Einstein: Philosopher-Scientist, La Salle: Open Court, 1949, pp. 201–241Google Scholar
  12. 12.
    Borceux, F.: Handbook of Categorical Algebra. 3. Categories of sheaves. Volume 52 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1994Google Scholar
  13. 13.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237(1–2), 31–68 (2003)zbMATHADSMathSciNetGoogle Scholar
  14. 14.
    Bub J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  15. 15.
    Bunce L.J., Wright J.D.M.: The Mackey-Gleason problem for vector measures on projections in von Neumann algebras. J. London Math. Soc. (2) 49(1), 133–149 (1994)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Bunce L.J., Wright J.D.M.: The quasi-linearity problem for C*-algebras. Pac. J. Math. 172(1), 41–47 (1996)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Butterfield J.: Some worlds of quantum theory. In: Polkinghorne, J., Russell, R. (eds) Quantum Mechanics (Scientific Perspectives on Divine Action Vol.5), pp. 111–140. Vatican Observatory Publications, Rome (2002)Google Scholar
  18. 18.
    Butterfield J.: Topos theory as a framework for partial truth. In: Wolenski, J., ärdenfors, P.G, Kijania- Placek, K. (eds) In the Scope of Logic, Methodology and Philosophy of Science, pp. 307–329. Berlin-Heidelberg- New York, Springer (2003)Google Scholar
  19. 19.
    Butterfield J., Hamilton J., Isham C.J.: A topos perspective on the Kochen-Specker theorem: III. Von Neumann algebras as the base category. Int. J. Theor. Phys. 39(6), 1413–1436 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Butterfield J., Isham C.J.: A topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations. Int. J. Theor. Phys. 37(11), 2669–2733 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Butterfield J., Isham C.J.: A topos perspective on the Kochen-Specker theorem: II. Conceptual aspects and classical analogues. Int. J. Theor. Phys. 38(3), 827–859 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Caspers, M.: Gelfand spectra of C*-algebras in topos theory. M.Sc. Thesis Radboud University Nijmegen, available at http://www.math.ru.nl/~landsman/scriptieMartijn.pdf, 2008
  23. 23.
    Caspers M., Heunen C., Landsman N.P., Spitters B.: Intuitionistic quantum logic of an n-level system. Found. Phys. 39, 731–759 (2009)CrossRefADSGoogle Scholar
  24. 24.
    Cederquist, J., Coquand, T.: Entailment relations and distributive lattices. In: Logic Colloquium ’98 (Prague), Volume 13 of Lect. Notes Log., Urbana, IL: Assoc. Symbol. Logic, 2000, pp. 127–139Google Scholar
  25. 25.
    Connes A.: Noncommutative geometry. Academic Press Inc., San Diego, CA (1994)zbMATHGoogle Scholar
  26. 26.
    Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motices, Volume 55 of Colloquium Publications. Providence, RI: Amer. Math. Soc. 2008Google Scholar
  27. 27.
    Coquand T.: About Stone’s notion of spectrum. J. Pure Appl. Alg. 197, 141–158 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Coquand T., Sambin G., Smith J., Valentini S.: Inductively generated formal topologies. Ann. Pure Appl. Logic 124, 71–106 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Coquand, T., Spitters, B.: Constructive Gelfand duality for C*-algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 2009. doi: 10.1017/S0305004109002515
  30. 30.
    Coquand T., Spitters B.: Integrals and valuations. J. Logic and Anal. 1(3), 1–22 (2009)MathSciNetGoogle Scholar
  31. 31.
    Coquand T., Spitters B.: Formal topology and constructive mathematics: the Gelfand and Stone-Yosida representation theorems. J. Univ. Comp. Sci. 11(12), 1932–1944 (2005)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Döring A.: Kochen-Specker theorem for Von Neumann algebras. Int. J. Theor. Phys. 44(2), 139–160 (2005)zbMATHCrossRefGoogle Scholar
  33. 33.
    Döring, A.: Quantum states and measures on the spectral presheaf. http://arxiv.org/abs/0809.4847V1[quant-ph], 2008, to appear in special issue of Adv. Sci.lett, “Quantum” Parity, Cosmology, Black Holes, M. Bajowld, ed.
  34. 34.
    Döring A., Isham C.J.: A topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys. 49, 053515 (2008)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Döring A., Isham C.J.: A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 49, 053516 (2008)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Döring A., Isham C.J.: A topos foundation for theories of physics: III. The representation of physical quantities with arrows. J. Math. Phys. 49, 053517 (2008)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Döring A., Isham C.J.: A topos foundation for theories of physics: IV. Categories of systems. J. Math. Phys. 49, 053518 (2008)ADSGoogle Scholar
  38. 38.
    Döring, A., Isham, C.J.: ‘What is a thing?’: Topos theory in the foundations of physics. In: B. Coecke, ed. New Structures in Physics, Lecture Notes in Physics. Springer, 2009, http://arxiv.org/abs/:0803.0417v1[quant-ph], 2008
  39. 39.
    Emch G.G.: Mathematical and conceptual foundations of 20th-century physics, Volume 100 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1984)Google Scholar
  40. 40.
    Fourman, M.P., Grayson, R.J.: Formal spaces. In: The L. E. J. Brouwer Centenary Symposium, Number 110 in Studies in Logic and the Foundations of Mathematics, Amsterdam: North-Holland, 1982, pp. 107–122Google Scholar
  41. 41.
    Fourman M.P., Ščedrov A.: The “world’s simplest axiom of choice” fails. Manus. Math. 38(3), 325–332 (1982)zbMATHCrossRefGoogle Scholar
  42. 42.
    Goldblatt R.: Topoi, the Categorical Analysis of Logic. North-Holland, Amsterdam (1984)Google Scholar
  43. 43.
    Grothendieck, A.:Récoltes et Semailles, témoignage sur un passé de mathématicien. Université des Sciences et Techniques du Languedoc, Montpellier, 1985–1987Google Scholar
  44. 44.
    Haag, R.: Local Quantum Physics. Texts and Monographs in Physics. Second, Berlin: Springer-Verlag, 1996Google Scholar
  45. 45.
    Hamhalter J.: Traces, dispersions of states and hidden variables. Found. Phys. Lett. 17(6), 581–597 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Heckmann R.: Probabilistic power domains, information systems, and locales. Lect. Notes Comput. Sci. 802, 410–437 (1994)MathSciNetGoogle Scholar
  47. 47.
    Heunen, C., Landsman, N.P., Spitters, B.: Bohrification of operator algebras and quantum logic. Synthese, to appear; http://arxiv.org/abs/0905.2275
  48. 48.
    Johnstone P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  49. 49.
    Johnstone P.T.: Open locales and exponentiation. In: Gray, J.W. (eds) Mathematical Applications of Category Theory, Number 30 in Contemporary Mathematics, pp. 84–116. Providence RI, Amer. Math. Soc. (1984)Google Scholar
  50. 50.
    Johnstone P.T.: Sketches of an Elephant: A Topos Theory Compendium, Volume 1. Clarendon Press, London (2002)Google Scholar
  51. 51.
    Johnstone P.T.: Sketches of an Elephant: A Topos Theory Compendium, Volume 2. Clarendon Press, London (2002)Google Scholar
  52. 52.
    Joyal A., Moerdijk I.: Toposes are cohomologically equivalent to spaces. Amer. J. Math. 112(1), 87–95 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck. Memoirs of the American Mathematical Society, Vol. 309, Providence, RI: Amer. Math. Soc., 1984Google Scholar
  54. 54.
    Kalmbach G.: Orthomodular Lattices, Volume 18 of London Mathematical Society Monographs. Academic Press, London-New York (1983)Google Scholar
  55. 55.
    Kalmbach G.: Measures and Hilbert Lattices. World Scientific, Singapore (1986)zbMATHGoogle Scholar
  56. 56.
    Kochen S., Specker E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)zbMATHMathSciNetGoogle Scholar
  57. 57.
    Krömer R.: Tool and Object: a History and Philosophy of Category Theory. Basel-Boston, Birkhäuser (2007)zbMATHGoogle Scholar
  58. 58.
    Landsman N.P.: Mathematical Topics between Classical and Quantum Mechanics. Springer, Berlin-Heideberg-New York (1998)Google Scholar
  59. 59.
    Landsman, N.P.: Lecture notes on C*-algebras and K-theory. Available at http://www.science.uva.nl/~npl/CK.pdf, 2004
  60. 60.
    Landsman N.P.: Between classical and quantum. In: Earman, J., Butterfield, J. (eds) Handbook of Philosophy of Science, Volume 2: Philosophy of Physics, pp. 417–553. Elsevier, Oxford (2007)Google Scholar
  61. 61.
    Landsman N.P.: Macroscopic observables and the Born rule. I. Long run frequencies. Rev. Math. Phys. 20, 1173–1190 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces. Vol. I. North-Holland Publishing Co., Amsterdam (1971)zbMATHGoogle Scholar
  63. 63.
    Mac Lane S., Moerdijk I.: Sheaves in Geometry and Logic. Springer, Berlin-Heidelberg-New York (1992)zbMATHGoogle Scholar
  64. 64.
    Mackey, G.W.: The Mathematical Foundations of Quantum Mechanics. Mathematical Physics Monograph Series. Advanced Book Program, Reading, MA: Benjamin/Cummings Publishing Co. Inc., 1980Google Scholar
  65. 65.
    McLarty C.: The uses and abuses of the history of topos theory. British J. Philos. Sci. 41(3), 351–375 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Moerdijk I.: Spaced spaces. Comp. Math. 53(2), 171–209 (1984)zbMATHMathSciNetGoogle Scholar
  67. 67.
    Mulvey, C.J. & Rend. Circ. Mat. Palermo (2) Suppl., 12, 99–104 (1986). Second topology conference (Taormina, 1984)Google Scholar
  68. 68.
    Mulvey C.J., Pelletier J.W.: A geometric characterization concerning compact, convex sets. Math. Proc. Camb. Philos. Soc. 109(2), 351–361 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Negri S.: Continuous domains as formal spaces. Math. Struct. Comp. Sci. 12(1), 19–52 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Rédei M.: Quantum Logic in Algebraic Approach, Volume 91. Dordredit, Kluwer Academic Publishers (1998)Google Scholar
  71. 71.
    Sambin G.: Intuitionistic formal spaces - a first communication. In: Skordev, D. (eds) Mathematical Logic and its Applications, pp. 187–204. Plenum, London (1987)Google Scholar
  72. 72.
    Sambin G.: Some points in formal topology. Theor. Comp. Sci. 305, 347–408 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Scheibe E.: The Logical Analysis of Quantum Mechanics. Pergamon Press, Oxford (1973)Google Scholar
  74. 74.
    Scott, D.: Lattice theory, data types and semantics. In: NYU Symposium on Formal Semantics (ed. R. Rustin), New York: Prentice-Hall, 1972, pp. 65–106Google Scholar
  75. 75.
    Spitters, B.: Constructive algebraic integration theory without choice. In: T. Coquand, H. Lombardi, and M.-F. Roy, eds. Mathematics, Algorithms, Proofs, Number 05021 in Dagstuhl Seminar Proceedings. IBFI, 2005Google Scholar
  76. 76.
    Varadarajan V.S.: Geometry of Quantum Theory, Second edition. Springer, Berlin-Heidelberg-New York (1985)zbMATHGoogle Scholar
  77. 77.
    Vickers S.: Topology via Logic. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  78. 78.
    Vickers S.: The double powerlocale and exponentiation: a case study in geometric logic. Theory Appl. Categ. 12, 372–422 (2004)zbMATHMathSciNetGoogle Scholar
  79. 79.
    Vickers S.: Compactness in locales and in formal topology. Ann. Pure Appl. Logic 137, 413–438 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    Vickers S.: Locales and toposes as spaces. In: Aiello, M., Pratt-Hartmann, I.E., Benthem, J.F.A.K. (eds) Handbook of Spatial Logics, Chapter 8, Springer, Berlin-Heidelberg-New York (2007)Google Scholar
  81. 81.
    Vickers S.: A localic theory of lower and upper integrals. Mathe. Logic Quart. 54, 109–123 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    Zaanen A.C.: Riesz Spaces. II, Volume 30 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1983)Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Chris Heunen
    • 1
  • Nicolaas P. Landsman
    • 1
  • Bas Spitters
    • 2
  1. 1.Institute for Mathematics, Astrophysics, and Particle PhysicsRadboud Universiteit NijmegenNijmegenThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations