A Topos for Algebraic Quantum Theory
- 1k Downloads
- 52 Citations
Abstract
The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*-algebra of observables A induces a topos \({\mathcal{T}(A)}\) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra \({\underline{A}}\) . According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum \({\underline{\Sigma}(\underline{A})}\) in \({\mathcal{T}(A)}\) , which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on \({\underline{\Sigma}}\) , and self-adjoint elements of A define continuous functions (more precisely, locale maps) from \({\underline{\Sigma}}\) to Scott’s interval domain. Noting that open subsets of \({\underline{\Sigma}(\underline{A})}\) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos \({\mathcal{T}(A)}\).
These results were inspired by the topos-theoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham.
Keywords
Topo Distributive Lattice Quantum Logic Riesz Space Heyting AlgebraNotes
Acknowledgement
The authors are indebted to Andreas Döring, Ieke Moerdijk, Chris Mulvey, Isar Stubbe, and Steve Vickers for guidance and useful feedback on talks and earlier drafts of this article. We are exceptionally grateful to the referee of this paper for unusually detailed and helpful comments.
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
References
- 1.Aarnes J.F.: Quasi-states on C*-algebras. Trans. Amer. Math. Soc. 149, 601–625 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
- 2.Abramsky, S., Jung, A.: Domain theory. In: Handbook for Logic in Computer Science. Volume 3. London: Clarendon Press, 1994Google Scholar
- 3.Aczel P.: Aspects of general topology in constructive set theory. Ann. Pure Appl. Logic 137, 3–29 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Adelman M., Corbett J.V.: A sheaf model for intuitionistic quantum mechanics. Appl. Categ. Struct. 3, 79–104 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Banaschewski B., Mulvey C.J.: The spectral theory of commutative C*-algebras: the constructive Gelfand-Mazur theorem. Quaest. Math. 23(4), 465–488 (2000)zbMATHMathSciNetGoogle Scholar
- 6.Banaschewski B., Mulvey C.J.: The spectral theory of commutative C*-algebras: the constructive spectrum. Quaest. Math. 23(4), 425–464 (2000)zbMATHMathSciNetGoogle Scholar
- 7.Banaschewski B., Mulvey C.J.: A globalisation of the Gelfand duality theorem. Ann. Pure Appl. Logic 137(1–3), 62–103 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
- 8.Battilotti G., Sambin G.: Pretopologies and uniform presentation of sup-lattices, quantales and frames. Ann. Pure Appl. Logic. 137, 30–61 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
- 9.Bell, J.L.: The development of categorical logic. In: Handbook of Philosophical Logic. Volume 12. Berlin-Heidelberg-New York: Springer, 2005Google Scholar
- 10.Birkhoff G., von Neumann J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)CrossRefGoogle Scholar
- 11.Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Albert Einstein: Philosopher-Scientist, La Salle: Open Court, 1949, pp. 201–241Google Scholar
- 12.Borceux, F.: Handbook of Categorical Algebra. 3. Categories of sheaves. Volume 52 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1994Google Scholar
- 13.Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237(1–2), 31–68 (2003)zbMATHADSMathSciNetGoogle Scholar
- 14.Bub J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
- 15.Bunce L.J., Wright J.D.M.: The Mackey-Gleason problem for vector measures on projections in von Neumann algebras. J. London Math. Soc. (2) 49(1), 133–149 (1994)zbMATHMathSciNetGoogle Scholar
- 16.Bunce L.J., Wright J.D.M.: The quasi-linearity problem for C*-algebras. Pac. J. Math. 172(1), 41–47 (1996)zbMATHMathSciNetGoogle Scholar
- 17.Butterfield J.: Some worlds of quantum theory. In: Polkinghorne, J., Russell, R. (eds) Quantum Mechanics (Scientific Perspectives on Divine Action Vol.5), pp. 111–140. Vatican Observatory Publications, Rome (2002)Google Scholar
- 18.Butterfield J.: Topos theory as a framework for partial truth. In: Wolenski, J., ärdenfors, P.G, Kijania- Placek, K. (eds) In the Scope of Logic, Methodology and Philosophy of Science, pp. 307–329. Berlin-Heidelberg- New York, Springer (2003)Google Scholar
- 19.Butterfield J., Hamilton J., Isham C.J.: A topos perspective on the Kochen-Specker theorem: III. Von Neumann algebras as the base category. Int. J. Theor. Phys. 39(6), 1413–1436 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
- 20.Butterfield J., Isham C.J.: A topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations. Int. J. Theor. Phys. 37(11), 2669–2733 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
- 21.Butterfield J., Isham C.J.: A topos perspective on the Kochen-Specker theorem: II. Conceptual aspects and classical analogues. Int. J. Theor. Phys. 38(3), 827–859 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
- 22.Caspers, M.: Gelfand spectra of C*-algebras in topos theory. M.Sc. Thesis Radboud University Nijmegen, available at http://www.math.ru.nl/~landsman/scriptieMartijn.pdf, 2008
- 23.Caspers M., Heunen C., Landsman N.P., Spitters B.: Intuitionistic quantum logic of an n-level system. Found. Phys. 39, 731–759 (2009)CrossRefADSGoogle Scholar
- 24.Cederquist, J., Coquand, T.: Entailment relations and distributive lattices. In: Logic Colloquium ’98 (Prague), Volume 13 of Lect. Notes Log., Urbana, IL: Assoc. Symbol. Logic, 2000, pp. 127–139Google Scholar
- 25.Connes A.: Noncommutative geometry. Academic Press Inc., San Diego, CA (1994)zbMATHGoogle Scholar
- 26.Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motices, Volume 55 of Colloquium Publications. Providence, RI: Amer. Math. Soc. 2008Google Scholar
- 27.Coquand T.: About Stone’s notion of spectrum. J. Pure Appl. Alg. 197, 141–158 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
- 28.Coquand T., Sambin G., Smith J., Valentini S.: Inductively generated formal topologies. Ann. Pure Appl. Logic 124, 71–106 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
- 29.Coquand, T., Spitters, B.: Constructive Gelfand duality for C*-algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 2009. doi: 10.1017/S0305004109002515
- 30.Coquand T., Spitters B.: Integrals and valuations. J. Logic and Anal. 1(3), 1–22 (2009)MathSciNetGoogle Scholar
- 31.Coquand T., Spitters B.: Formal topology and constructive mathematics: the Gelfand and Stone-Yosida representation theorems. J. Univ. Comp. Sci. 11(12), 1932–1944 (2005)zbMATHMathSciNetGoogle Scholar
- 32.Döring A.: Kochen-Specker theorem for Von Neumann algebras. Int. J. Theor. Phys. 44(2), 139–160 (2005)zbMATHCrossRefGoogle Scholar
- 33.Döring, A.: Quantum states and measures on the spectral presheaf. http://arxiv.org/abs/0809.4847V1[quant-ph], 2008, to appear in special issue of Adv. Sci.lett, “Quantum” Parity, Cosmology, Black Holes, M. Bajowld, ed.
- 34.Döring A., Isham C.J.: A topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys. 49, 053515 (2008)CrossRefADSMathSciNetGoogle Scholar
- 35.Döring A., Isham C.J.: A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 49, 053516 (2008)CrossRefADSMathSciNetGoogle Scholar
- 36.Döring A., Isham C.J.: A topos foundation for theories of physics: III. The representation of physical quantities with arrows. J. Math. Phys. 49, 053517 (2008)CrossRefADSMathSciNetGoogle Scholar
- 37.Döring A., Isham C.J.: A topos foundation for theories of physics: IV. Categories of systems. J. Math. Phys. 49, 053518 (2008)ADSGoogle Scholar
- 38.Döring, A., Isham, C.J.: ‘What is a thing?’: Topos theory in the foundations of physics. In: B. Coecke, ed. New Structures in Physics, Lecture Notes in Physics. Springer, 2009, http://arxiv.org/abs/:0803.0417v1[quant-ph], 2008
- 39.Emch G.G.: Mathematical and conceptual foundations of 20th-century physics, Volume 100 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1984)Google Scholar
- 40.Fourman, M.P., Grayson, R.J.: Formal spaces. In: The L. E. J. Brouwer Centenary Symposium, Number 110 in Studies in Logic and the Foundations of Mathematics, Amsterdam: North-Holland, 1982, pp. 107–122Google Scholar
- 41.Fourman M.P., Ščedrov A.: The “world’s simplest axiom of choice” fails. Manus. Math. 38(3), 325–332 (1982)zbMATHCrossRefGoogle Scholar
- 42.Goldblatt R.: Topoi, the Categorical Analysis of Logic. North-Holland, Amsterdam (1984)Google Scholar
- 43.Grothendieck, A.:Récoltes et Semailles, témoignage sur un passé de mathématicien. Université des Sciences et Techniques du Languedoc, Montpellier, 1985–1987Google Scholar
- 44.Haag, R.: Local Quantum Physics. Texts and Monographs in Physics. Second, Berlin: Springer-Verlag, 1996Google Scholar
- 45.Hamhalter J.: Traces, dispersions of states and hidden variables. Found. Phys. Lett. 17(6), 581–597 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
- 46.Heckmann R.: Probabilistic power domains, information systems, and locales. Lect. Notes Comput. Sci. 802, 410–437 (1994)MathSciNetGoogle Scholar
- 47.Heunen, C., Landsman, N.P., Spitters, B.: Bohrification of operator algebras and quantum logic. Synthese, to appear; http://arxiv.org/abs/0905.2275
- 48.Johnstone P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
- 49.Johnstone P.T.: Open locales and exponentiation. In: Gray, J.W. (eds) Mathematical Applications of Category Theory, Number 30 in Contemporary Mathematics, pp. 84–116. Providence RI, Amer. Math. Soc. (1984)Google Scholar
- 50.Johnstone P.T.: Sketches of an Elephant: A Topos Theory Compendium, Volume 1. Clarendon Press, London (2002)Google Scholar
- 51.Johnstone P.T.: Sketches of an Elephant: A Topos Theory Compendium, Volume 2. Clarendon Press, London (2002)Google Scholar
- 52.Joyal A., Moerdijk I.: Toposes are cohomologically equivalent to spaces. Amer. J. Math. 112(1), 87–95 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
- 53.Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck. Memoirs of the American Mathematical Society, Vol. 309, Providence, RI: Amer. Math. Soc., 1984Google Scholar
- 54.Kalmbach G.: Orthomodular Lattices, Volume 18 of London Mathematical Society Monographs. Academic Press, London-New York (1983)Google Scholar
- 55.Kalmbach G.: Measures and Hilbert Lattices. World Scientific, Singapore (1986)zbMATHGoogle Scholar
- 56.Kochen S., Specker E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)zbMATHMathSciNetGoogle Scholar
- 57.Krömer R.: Tool and Object: a History and Philosophy of Category Theory. Basel-Boston, Birkhäuser (2007)zbMATHGoogle Scholar
- 58.Landsman N.P.: Mathematical Topics between Classical and Quantum Mechanics. Springer, Berlin-Heideberg-New York (1998)Google Scholar
- 59.Landsman, N.P.: Lecture notes on C*-algebras and K-theory. Available at http://www.science.uva.nl/~npl/CK.pdf, 2004
- 60.Landsman N.P.: Between classical and quantum. In: Earman, J., Butterfield, J. (eds) Handbook of Philosophy of Science, Volume 2: Philosophy of Physics, pp. 417–553. Elsevier, Oxford (2007)Google Scholar
- 61.Landsman N.P.: Macroscopic observables and the Born rule. I. Long run frequencies. Rev. Math. Phys. 20, 1173–1190 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
- 62.Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces. Vol. I. North-Holland Publishing Co., Amsterdam (1971)zbMATHGoogle Scholar
- 63.Mac Lane S., Moerdijk I.: Sheaves in Geometry and Logic. Springer, Berlin-Heidelberg-New York (1992)zbMATHGoogle Scholar
- 64.Mackey, G.W.: The Mathematical Foundations of Quantum Mechanics. Mathematical Physics Monograph Series. Advanced Book Program, Reading, MA: Benjamin/Cummings Publishing Co. Inc., 1980Google Scholar
- 65.McLarty C.: The uses and abuses of the history of topos theory. British J. Philos. Sci. 41(3), 351–375 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
- 66.Moerdijk I.: Spaced spaces. Comp. Math. 53(2), 171–209 (1984)zbMATHMathSciNetGoogle Scholar
- 67.Mulvey, C.J. & Rend. Circ. Mat. Palermo (2) Suppl., 12, 99–104 (1986). Second topology conference (Taormina, 1984)Google Scholar
- 68.Mulvey C.J., Pelletier J.W.: A geometric characterization concerning compact, convex sets. Math. Proc. Camb. Philos. Soc. 109(2), 351–361 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
- 69.Negri S.: Continuous domains as formal spaces. Math. Struct. Comp. Sci. 12(1), 19–52 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
- 70.Rédei M.: Quantum Logic in Algebraic Approach, Volume 91. Dordredit, Kluwer Academic Publishers (1998)Google Scholar
- 71.Sambin G.: Intuitionistic formal spaces - a first communication. In: Skordev, D. (eds) Mathematical Logic and its Applications, pp. 187–204. Plenum, London (1987)Google Scholar
- 72.Sambin G.: Some points in formal topology. Theor. Comp. Sci. 305, 347–408 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
- 73.Scheibe E.: The Logical Analysis of Quantum Mechanics. Pergamon Press, Oxford (1973)Google Scholar
- 74.Scott, D.: Lattice theory, data types and semantics. In: NYU Symposium on Formal Semantics (ed. R. Rustin), New York: Prentice-Hall, 1972, pp. 65–106Google Scholar
- 75.Spitters, B.: Constructive algebraic integration theory without choice. In: T. Coquand, H. Lombardi, and M.-F. Roy, eds. Mathematics, Algorithms, Proofs, Number 05021 in Dagstuhl Seminar Proceedings. IBFI, 2005Google Scholar
- 76.Varadarajan V.S.: Geometry of Quantum Theory, Second edition. Springer, Berlin-Heidelberg-New York (1985)zbMATHGoogle Scholar
- 77.Vickers S.: Topology via Logic. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
- 78.Vickers S.: The double powerlocale and exponentiation: a case study in geometric logic. Theory Appl. Categ. 12, 372–422 (2004)zbMATHMathSciNetGoogle Scholar
- 79.Vickers S.: Compactness in locales and in formal topology. Ann. Pure Appl. Logic 137, 413–438 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
- 80.Vickers S.: Locales and toposes as spaces. In: Aiello, M., Pratt-Hartmann, I.E., Benthem, J.F.A.K. (eds) Handbook of Spatial Logics, Chapter 8, Springer, Berlin-Heidelberg-New York (2007)Google Scholar
- 81.Vickers S.: A localic theory of lower and upper integrals. Mathe. Logic Quart. 54, 109–123 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
- 82.Zaanen A.C.: Riesz Spaces. II, Volume 30 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1983)Google Scholar
Copyright information
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.