Communications in Mathematical Physics

, Volume 289, Issue 3, pp 1057–1086 | Cite as

Unital Quantum Channels – Convex Structure and Revivals of Birkhoff’s Theorem

Open Access


The set of doubly-stochastic quantum channels and its subset of mixtures of unitaries are investigated. We provide a detailed analysis of their structure together with computable criteria for the separation of the two sets. When applied to O(d)-covariant channels this leads to a complete characterization and reveals a remarkable feature: instances of channels which are not in the convex hull of unitaries can become elements of this set by either taking two copies of them or supplementing with a completely depolarizing channel. These scenarios imply that a channel whose noise initially resists any environment-assisted attempt of correction can become perfectly correctable.


Convex Hull Extreme Point Entangle State Quantum Channel Convex Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pérez-García D., Wolf M.M., Petz D., Ruskai M.B.: Contractivity of positive and trace-preserving maps under L p norms. J. Math. Phys. 47(8), 083506 (2006)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Arias A., Gheondea A., Gudder S.: Fixed points of quantum operations. J. Math. Phys. 43(12), 5872–5881 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    King C.: Additivity for unital qubit channels. J. Math. Phys. 43, 4641–4653 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Fukuda M.: Simplification of additivity conjecture in quantum information theory. Quant. Inf. Comp. 6, 179–186 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fukuda M., Wolf M.M.: Simplifying additivity problems using direct sum constructions. J. Math. Phys. 48, 2101 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Rosgen B.: Additivity and distinguishability of random unitary channels. J. Math. Phys. 49, 102107 (2008)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Tregub S.L.: Bistochastic operators on finite-dimensional von-Neumann algebras. Soviet Math. 30, 105 (1986)MATHGoogle Scholar
  8. 8.
    Kümmerer B., Maassen H.: The essentially commutative dilations of dynamical semigroups on M n. Commun. Math. Phys. 109, 1–22 (1987)MATHCrossRefADSGoogle Scholar
  9. 9.
    Landau L.J., Streater R.F.: On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras. Lin. Alg. Appl. 193, 107–127 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Birkhoff G.: Three observations on linear algebra. Univ. Nac. Tucuan. Revista A 5, 147–151 (1946)MATHMathSciNetGoogle Scholar
  11. 11.
    Gregoratti M., Werner R.F.: Quantum lost and found. J. Mod. Opt. 50, 915–933 (2003)MATHADSMathSciNetGoogle Scholar
  12. 12.
    Smolin J.A., Verstraete F., Winter A.: Entanglement of assistance and multipartite state distillation. Phys. Rev. A 72, 052317 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Jamiolkowski A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Watrous, J.: Mixing doubly stochastic quantum channels with the completely depolarizing channel.[quant-ph], 2008
  15. 15.
    Rudolph O.: On extremal quantum states of composite systems with fixed marginals. J. Math. Phys. 45(11), 4035–4041 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Parthasarath K.R.: Extremal quantum states in coupled systems. Ann. l’Inst. H. Poincaré (B) Prob. Stat. 41, 257–268 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Audenaert K.M.R., Scheel S.: On random unitary channels. New J. Phys. 10, 023011 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Choi M.-D.: Completely positive linear maps on complex matrices. Lin. Alg. Appl. 10, 285–290 (1975)MATHCrossRefGoogle Scholar
  19. 19.
    Buscemi F.: On the minimal number of unitaries needed to describe a random-unitary channel. Phys. Lett. A 360, 256–258 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Zeidler E.: Applied Functional Analysis. Main Principles and Their Applications. Springer, New York (1995)MATHGoogle Scholar
  21. 21.
    DiVincenzo, D.P., Fuchs, C.A., Mabuchi, H., Smolin, J.A., Thapliyal, A.V., Uhlmann, A.: Entanglement of assistance. In: Proc. Quantum Computing and Quantum Communications, First NASA Intl. Conf., Palm Springs, Berlin-Heidelberg-New York: Springer, 1999, pp. 247–257Google Scholar
  22. 22.
    Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  23. 23.
    Werner R.F., Holevo A.S.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43, 4353–4357 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Vollbrecht K.G.H., Werner R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)CrossRefADSGoogle Scholar
  25. 25.
    Faßbender H., Ikramov Kh.D.: Some observations on the Youla form and conjugate-normal matrices. Lin. Alg. Appl. 422, 29–38 (2006)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge, Cambridge University Press, 1990MATHGoogle Scholar
  28. 28.
    Bunse-Gerstner A., Byers R., Mehrmann V.: A quaternion qr algorithm. Numer. Math. 55, 83–95 (1989)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Max-Planck-Institute for Quantum OpticsGarchingGermany
  2. 2.Niels Bohr InstituteCopenhagenDenmark

Personalised recommendations