Communications in Mathematical Physics

, Volume 289, Issue 3, pp 1057–1086 | Cite as

Unital Quantum Channels – Convex Structure and Revivals of Birkhoff’s Theorem

Open Access
Article

Abstract

The set of doubly-stochastic quantum channels and its subset of mixtures of unitaries are investigated. We provide a detailed analysis of their structure together with computable criteria for the separation of the two sets. When applied to O(d)-covariant channels this leads to a complete characterization and reveals a remarkable feature: instances of channels which are not in the convex hull of unitaries can become elements of this set by either taking two copies of them or supplementing with a completely depolarizing channel. These scenarios imply that a channel whose noise initially resists any environment-assisted attempt of correction can become perfectly correctable.

References

  1. 1.
    Pérez-García D., Wolf M.M., Petz D., Ruskai M.B.: Contractivity of positive and trace-preserving maps under L p norms. J. Math. Phys. 47(8), 083506 (2006)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Arias A., Gheondea A., Gudder S.: Fixed points of quantum operations. J. Math. Phys. 43(12), 5872–5881 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    King C.: Additivity for unital qubit channels. J. Math. Phys. 43, 4641–4653 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Fukuda M.: Simplification of additivity conjecture in quantum information theory. Quant. Inf. Comp. 6, 179–186 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fukuda M., Wolf M.M.: Simplifying additivity problems using direct sum constructions. J. Math. Phys. 48, 2101 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Rosgen B.: Additivity and distinguishability of random unitary channels. J. Math. Phys. 49, 102107 (2008)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Tregub S.L.: Bistochastic operators on finite-dimensional von-Neumann algebras. Soviet Math. 30, 105 (1986)MATHGoogle Scholar
  8. 8.
    Kümmerer B., Maassen H.: The essentially commutative dilations of dynamical semigroups on M n. Commun. Math. Phys. 109, 1–22 (1987)MATHCrossRefADSGoogle Scholar
  9. 9.
    Landau L.J., Streater R.F.: On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras. Lin. Alg. Appl. 193, 107–127 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Birkhoff G.: Three observations on linear algebra. Univ. Nac. Tucuan. Revista A 5, 147–151 (1946)MATHMathSciNetGoogle Scholar
  11. 11.
    Gregoratti M., Werner R.F.: Quantum lost and found. J. Mod. Opt. 50, 915–933 (2003)MATHADSMathSciNetGoogle Scholar
  12. 12.
    Smolin J.A., Verstraete F., Winter A.: Entanglement of assistance and multipartite state distillation. Phys. Rev. A 72, 052317 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Jamiolkowski A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Watrous, J.: Mixing doubly stochastic quantum channels with the completely depolarizing channel. http://arXiv.org/abs/0807.2668v1[quant-ph], 2008
  15. 15.
    Rudolph O.: On extremal quantum states of composite systems with fixed marginals. J. Math. Phys. 45(11), 4035–4041 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Parthasarath K.R.: Extremal quantum states in coupled systems. Ann. l’Inst. H. Poincaré (B) Prob. Stat. 41, 257–268 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Audenaert K.M.R., Scheel S.: On random unitary channels. New J. Phys. 10, 023011 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Choi M.-D.: Completely positive linear maps on complex matrices. Lin. Alg. Appl. 10, 285–290 (1975)MATHCrossRefGoogle Scholar
  19. 19.
    Buscemi F.: On the minimal number of unitaries needed to describe a random-unitary channel. Phys. Lett. A 360, 256–258 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Zeidler E.: Applied Functional Analysis. Main Principles and Their Applications. Springer, New York (1995)MATHGoogle Scholar
  21. 21.
    DiVincenzo, D.P., Fuchs, C.A., Mabuchi, H., Smolin, J.A., Thapliyal, A.V., Uhlmann, A.: Entanglement of assistance. In: Proc. Quantum Computing and Quantum Communications, First NASA Intl. Conf., Palm Springs, Berlin-Heidelberg-New York: Springer, 1999, pp. 247–257Google Scholar
  22. 22.
    Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  23. 23.
    Werner R.F., Holevo A.S.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43, 4353–4357 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Vollbrecht K.G.H., Werner R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)CrossRefADSGoogle Scholar
  25. 25.
    Faßbender H., Ikramov Kh.D.: Some observations on the Youla form and conjugate-normal matrices. Lin. Alg. Appl. 422, 29–38 (2006)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge, Cambridge University Press, 1990MATHGoogle Scholar
  28. 28.
    Bunse-Gerstner A., Byers R., Mehrmann V.: A quaternion qr algorithm. Numer. Math. 55, 83–95 (1989)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Max-Planck-Institute for Quantum OpticsGarchingGermany
  2. 2.Niels Bohr InstituteCopenhagenDenmark

Personalised recommendations