Equidistribution of Eisenstein Series in the Level Aspect

  • Shin-ya KoyamaEmail author


We prove an equidistribution property of the Eisenstein series for congruence subgroups as the level goes to infinity. This is an analogy of the phenomenon called quantum ergodicity.


Eisenstein Series Cusp Form Congruence Subgroup Euler Product Level Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. DFI.
    Duke W., Friedlander J.B., Iwaniec H.: The subconvexity problem for Artin L-functions. Invent. Math. 149, 489–577 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. HL.
    Hoffstein J., Lockhart P.: Coefficients of Maass forms and the Siegel zero. Ann. Math. 140, 161–181 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. I.
    Iwaniec, H.: Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, Vol. 53, Providence, RI: Amer. Math. Soc.Google Scholar
  4. IK.
    Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications 53, Providence, RI: Amer. Math. Soc., 2004Google Scholar
  5. K.
    Koyama S.: Quantum ergodicity of Eisenstein series for arithmetic 3-manifolds. Commun. Math. Phys. 215, 477–486 (2000)zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. KMV.
    Kowalski E., Michel P., Vanderkam J.: Rankin-Selberg L-functions in the level aspect. Duke Math. J. 114, 123–191 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. L.
    Lindenstrass E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. 163, 165–219 (2006)CrossRefMathSciNetGoogle Scholar
  8. LS.
    Luo W., Sarnak P.: Quantum ergodicity of eigenfunctions on \({PSL_2(\mathbb{Z})\backslash H^2}\) . Publ. I.H.E.S. 81, 207–237 (1995)zbMATHMathSciNetGoogle Scholar
  9. R.
    Ramanujan S.: Some formulae in the arithmetic theory of numbers. Messenger of Math. 45, 81–84 (1916)Google Scholar
  10. RS.
    Rudnick Z., Sarnak P.: The behavior of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys 161, 195–213 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. M.
    Meurman, T.: On the order of the Maass L-function on the critical line. In: Number theory, Vol. I (Budapest, 1987), Colloq. Math. Soc. János Bolyai, 51, Amsterdams: North-Holland, 1990, pp. 325–354Google Scholar
  12. PS.
    Petridis Y., Sarnak P.: Quantum ergodicity for SL(2, o)\H 3 and estimates for L functions. J. Evol. Equ. 1, 277–290 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. S.
    Sarnak P.: Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J. Funct. Anal. 184, 419–445 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.The Institute of Mathematical SciencesEwha Womans UniversitySedaemoon-kuSouth Korea

Personalised recommendations