Advertisement

Communications in Mathematical Physics

, Volume 290, Issue 3, pp 941–972 | Cite as

The Area of Horizons and the Trapped Region

  • Lars Andersson
  • Jan MetzgerEmail author
Open Access
Article

Abstract

This paper considers some fundamental questions concerning marginally trapped surfaces, or apparent horizons, in Cauchy data sets for the Einstein equation. An area estimate for outermost marginally trapped surfaces is proved. The proof makes use of an existence result for marginal surfaces, in the presence of barriers, curvature estimates, together with a novel surgery construction for marginal surfaces. These results are applied to characterize the boundary of the trapped region.

Keywords

Black Hole Disjoint Union Fundamental Form Apparent Horizon Curvature Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Walter Simon, Marc Mars, Greg Galloway, Rick Schoen and Gerhard Huisken for helpful conversations. The second author would also like to thank Michael Eichmair and Leon Simon for their comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. AG05.
    Ashtekar A., Galloway G.J.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9(1), 1–30 (2005)zbMATHMathSciNetGoogle Scholar
  2. AK03.
    Ashtekar A., Krishnan B.: Dynamical horizons and their properties. Phys. Rev. D 68(10), 104030 (2003)CrossRefMathSciNetADSGoogle Scholar
  3. AM05.
    Andersson, L., Metzger, J.L.: Curvature estimates for stable marginally trapped surfaces. http://arXiv:org/abs/gr-qc/0512106, 2005
  4. AMS05.
    Andersson L., Mars M., Simon W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005)CrossRefADSGoogle Scholar
  5. AMS07.
    Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. http://arXiv:org/abs/0704.2889v2[gr-qc], 2007
  6. BD04.
    Ben-Dov I.: Penrose inequality and apparent horizons. Phys. Rev. D 70(12), 124031 (2004)CrossRefMathSciNetADSGoogle Scholar
  7. CLZ+07.
    Campanelli M., Lousto C.O., Zlochower Y., Krishnan B., Merritt D.: Spin flips and precession in black-hole-binary mergers. Phys. Rev. D 75, 064030 (2007)CrossRefADSGoogle Scholar
  8. CM99.
    Colding T.H., Minicozzi W.P. II: Examples of embedded minimal tori without area bounds, Internat. Math. Res. Notices 99(20), 1097–1100 (1999)CrossRefMathSciNetGoogle Scholar
  9. Dea03.
    Dean B.: Compact embedded minimal surfaces of positive genus without area bounds. Geom. Dedicata 102, 45–52 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. Eic07.
    Eichmair, M.: The plateau problem for apparent horizons. http://arXiv:org/abs/0711.4139, 2007
  11. GS06.
    Galloway G.J., Schoen R.: A generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266(2), 571–576 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. GT98.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Rev. 3. printing. Second ed., Berlin-Heidelberg-New York: Springer-Verlag, 1998Google Scholar
  13. HE73.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. London: Cambridge University Press, 1973Google Scholar
  14. HI01.
    Huisken G., Ilmanen T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)zbMATHMathSciNetGoogle Scholar
  15. HP99.
    Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In: Calculus of variations and geometric evolution problems (Cetraro, 1996), Lecture Notes in Math., vol. 1713, Berlin: Springer, 1999, pp. 45–84Google Scholar
  16. Jan78.
    Jang P.S.: On the positivity of energy in general relativity. J. Math. Phys. 19, 1152–1155 (1978)CrossRefMathSciNetADSGoogle Scholar
  17. KH97.
    Kriele M., Hayward S.A.: Outer trapped surfaces and their apparent horizon. J. Math. Phys. 38(3), 1593–1604 (1997)zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. KLZ07.
    Krishnan B., Lousto C.O., Zlochower Y.: Quasi-local linear momentum in black-hole binaries. Phys. Rev. D 76, 081501 (2007)CrossRefADSGoogle Scholar
  19. Lie96.
    Lieberman G.M.: Second order parabolic differential equations. World Scientific Publishing Co. Inc., River Edge, NJ (1996)zbMATHGoogle Scholar
  20. NR06.
    Nabutovsky A., Rotman R.: Curvature-free upper bounds for the smallest area of a minimal surface. Geom. Funct. Anal. 16(2), 453–475 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  21. Sch04.
    Schoen, R.: Talk given at the Miami Waves conference. January 2004Google Scholar
  22. SSY75.
    Schoen R., Simon L., Yau S.T.: Curvature estimates for minimal hypersurfaces. Acta Math. 134(3–4), 275–288 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  23. SY81.
    Schoen R., Yau S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79(2), 231–260 (1981)zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. SY94.
    Schoen, R., Yau, S.-T.: Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, Boston: International Press, 1994Google Scholar
  25. Yau01.
    Yau S.-T.: Geometry of three manifolds and existence of black hole due to boundary effect. Adv. Theor. Math. Phys. 5(4), 755–767 (2001)zbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Albert-Einstein-InstitutPotsdamGermany
  2. 2.Department of MathematicsUniversity of MiamiCoral GablesUSA
  3. 3.Stanford University, MathematicsStanfordUSA

Personalised recommendations