Communications in Mathematical Physics

, Volume 287, Issue 3, pp 959–981 | Cite as

Two-Dimensional Berezin-Li-Yau Inequalities with a Correction Term



We improve the Berezin-Li-Yau inequality in dimension two by adding a positive correction term to its right-hand side. It is also shown that the asymptotical behaviour of the correction term is almost optimal. This improves a previous result by Melas, [11].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berezin F.A.: Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR Ser. Mat. 36, 1134–1167 (1972)MATHMathSciNetGoogle Scholar
  2. 2.
    Freericks J.K., Lieb E.H., Ueltschi D.: Segregation in the Falicov-Kimball model. Commun. Math. Phys. 227, 243–279 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Goldbaum P.: Lower bound for the segregation in the Falicov-Kimball model. J. Phys. A. 36, 2227–2234 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Ivrii, V.: Microlocal analysis and precise spectral asymptotics. Springer Monographs in Mathematics. Berlin: Springer-Verlag, 1998Google Scholar
  5. 5.
    Ivrii, V.: The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary. (Russian) Funk. Anal. i Pril. 14(2), 25–34 (1980)Google Scholar
  6. 6.
    Kröger P.: Estimates for sums of eigenvalues of the Laplacian. J. Funct. Anal. 126, 217–227 (1994)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Laptev A.: Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151, 531–545 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Laptev, A., Weidl, T.: Recent results on Lieb-Thirring inequalities. Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), Exp. No. XX, 14 pp., Nantes: Univ. Nantes, 2000Google Scholar
  9. 9.
    Li P., Yau S.T.: On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88, 309–318 (1983)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Lieb, E., Loss, M.: Analysis. 2nd Ed., Providence, RI: Amer. Math. Soc., 2001Google Scholar
  11. 11.
    Melas A.D.: A lower bound for sums of eigenvalues of the Laplacian. Proc. Amer. Math. Soc. 131, 631–636 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Melrose, R.B.: Weyl’s conjecture for manifolds with concave boundary. In: Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Providence, RI: Amer. Math. Soc., 1980, pp. 257–274Google Scholar
  13. 13.
    Pólya G.: On the eigenvalues of vibrating membranes. Proc. London Math. Soc. 11, 419–433 (1961)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Safarov, Yu., Vassiliev, D.: The asymptotic distribution of eigenvalues of partial differential operators. Translations of Mathematical Monographs, 155. Providence, RI: Amer. Math. Soc., 1997Google Scholar
  15. 15.
    Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term. Preprint: arXiv: 0711.4925. To appear in Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. (2), to be published Jan 2009Google Scholar
  16. 16.
    Weyl H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71, 441–479 (1912)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Analysis, Dynamics and ModelingUniversität StuttgartStuttgartGermany

Personalised recommendations