Advertisement

Communications in Mathematical Physics

, Volume 287, Issue 1, pp 179–209 | Cite as

Gauged Laplacians on Quantum Hopf Bundles

  • Giovanni LandiEmail author
  • Cesare Reina
  • Alessandro Zampini
Open Access
Article

Abstract

We study gauged Laplacian operators on line bundles on a quantum 2-dimensional sphere. Symmetry under the (co)-action of a quantum group allows for their complete diagonalization. These operators describe ‘excitations moving on the quantum sphere’ in the field of a magnetic monopole. The energies are not invariant under the exchange monopole/antimonopole, that is under inverting the direction of the magnetic field. There are potential applications to models of quantum Hall effect.

Keywords

Line Bundle Hopf Algebra Quantum Group Principal Bundle Differential Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the ‘Italian project Cofin06 - Noncommutative geometry, quantum groups and applications’. The research of AZ started at SISSA (Trieste, Italy) and went on at the IAM at Bonn University (Germany), thanks to a fellowship by the Alexander von Humboldt Stiftung; he thanks the Mathematical Physics Sector of SISSA and his host in Germany, Prof. Sergio Albeverio, for their warm hospitality. We thank Francesco D’Andrea for reading the comptu-script.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Berline N., Getzler E., Vergne M.: Heat Kernels and Dirac Operators. Springer, Berlin-Heidelberg-New York (1991)Google Scholar
  2. 2.
    Brzezinski, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157 591–638 (1993) ; Erratum 167, 235 (1995)Google Scholar
  3. 3.
    Brzezinski T., Majid S.: Quantum differential and the q-monopole revisited. Acta Appl. Math. 54, 185–233 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brzezinski T., Majid S.: Line bundles on quantum spheres. AIP Conf. Proc. 345, 3–8 (1998)ADSMathSciNetGoogle Scholar
  5. 5.
    Hajac P.M.: Bundles over quantum sphere and noncommutative index theorem. K-Theory 21, 141–150 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hajac P.M., Majid S.: Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Haldane F.D.: Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605–608 (1983)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Klimyk A., Schmudgen K.: Quantum Groups and Their Representations. Springer, Berlin-Heidelberg-New York (1997)zbMATHGoogle Scholar
  9. 9.
    Landi G.: Spin-Hall effect with quantum group symmetries. Lett. Math. Phys. 75, 187–200 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Laughlin R.B.: Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)CrossRefADSGoogle Scholar
  11. 11.
    Majid S.: Foundations of Quantum Group Theory. Cambridge Univ. Press, Cambridge (1995)zbMATHGoogle Scholar
  12. 12.
    Majid S.: Noncommutative Riemannian and spin geometry of the standard q-sphere. Commun. Math. Phys. 256, 255–285 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Masuda T., Mimachi K., Nakagami Y., Noumi M., Ueno K.: Representations of the Quantum Group SU q (2) and the Little q-Jacobi Polynomials. J. Funct. Anal. 99, 357–387 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Masuda T., Nakagami Y., Watanabe J.: Noncommutative differential geometry on the quantum two sphere of P.Podleś. I: An algebraic viewpoint. K-Theory 5, 151–175 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Neshveyev S., Tuset L.: A Local Index Formula for the Quantum Sphere. Commun. Math. Phys. 254, 323–341 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Podleś P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Podleś P.: Differential calculus on quantum spheres. Lett. Math. Phys. 18, 107–119 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Schmüdgen K., Wagner E.: Representations of cross product algebras of Podleś quantum spheres. J. Lie Theory 17, 751–790 (2007)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Schmüdgen K., Wagner E.: Dirac operator and a twisted cyclic cocycle on the standard Podleś quantm sphere. J. reine angew. Math. 574, 219–235 (2004)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Schneider H.: Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72, 167–195 (1990)zbMATHGoogle Scholar
  21. 21.
    Varshalovic D.A., Moskalev A.N., Khersonskii V.K.: Quantum theory of angular momentum. World Scientific, Singapore (1988)Google Scholar
  22. 22.
    Wagner, E.: On the noncommutative spin geometry of the standard Podles sphere and index computations. http://arxiv.org/abs/0707.3403v2 [math. QA]
  23. 23.
    Woronowicz S.L.: Twisted SU q (2) group An example of a noncommutative differential calculus. Publ. Rest. Inst. Math.Sci. Kyoto Univ. 23, 117–181 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Woronowicz S.L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122, 125–170 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Giovanni Landi
    • 1
    • 2
    Email author
  • Cesare Reina
    • 3
  • Alessandro Zampini
    • 4
    • 5
  1. 1.Dipartimento di Matematica e InformaticaUniversità di TriesteTriesteItaly
  2. 2.INFNTriesteItaly
  3. 3.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  4. 4.Institut für Angewandte MathematikUniversität BonnBonnGermany
  5. 5.Max Planck Institut für MathematikBonnGermany

Personalised recommendations