Communications in Mathematical Physics

, Volume 287, Issue 2, pp 523–563 | Cite as

Quantum Charges and Spacetime Topology: The Emergence of New Superselection Sectors

Article

Abstract

A new form of superselection sectors of topological origin is developed. By that it is meant a new investigation that includes several extensions of the traditional framework of Doplicher, Haag and Roberts in local quantum theories. At first we generalize the notion of representations of nets of C*–algebras, then we provide a brand new view on selection criteria by adopting one with a strong topological flavour. We prove that it is coherent with the older point of view, hence a clue to a genuine extension. In this light, we extend Roberts’ cohomological analysis to the case where 1–cocycles bear non-trivial unitary representations of the fundamental group of the spacetime, equivalently of its Cauchy surface in the case of global hyperbolicity. A crucial tool is a notion of group von Neumann algebras generated by the 1–cocycles evaluated on loops over fixed regions. One proves that these group von Neumann algebras are localized at the bounded region where loops start and end and to be factorial of finite type I. All that amounts to a new invariant, in a topological sense, which can be defined as the dimension of the factor. We prove that any 1–cocycle can be factorized into a part that contains only the charge content and another where only the topological information is stored. This second part much resembles what in literature is known as geometric phases. Indeed, by the very geometrical origin of the 1–cocycles that we discuss in the paper, they are essential tools in the theory of net bundles, and the topological part is related to their holonomy content. At the end we prove the existence of net representations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharonov Y., Bohm D.: Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115, 485–491 (1959)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Ashtekar A., Sen A.: On the role of space-time topology in quantum phenomena: superselection of charge and emergence of nontrivial vacua. J. Math. Phys. 21, 526–533 (1980)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Baumgärtel H., Wollenberg M.: Causal nets of operator algebras. Akademie-Verlag, Berlin (1992)MATHGoogle Scholar
  4. 4.
    Beem J.K., Ehrlich P.E., Easley K.L.: Global Lorentzian geometry. 2nd ed. New York: Marcel Dekker, Inc., 1996MATHGoogle Scholar
  5. 5.
    Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)MATHCrossRefADSGoogle Scholar
  6. 6.
    Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77(2), 183–197 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. London Ser. A 392(No.1802), 45–57 (1984)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Brunetti, R., Franceschini, L., Moretti, V.: Topological cocycles in two dimensional Einstein cylinder for massive bosons. To appearGoogle Scholar
  9. 9.
    Brunetti, R., Fredenhagen, K.: Algebraic Quantum Field Theory. In: Encyclopedia of Mathematical Physics J.-P., Francoise, G., Naber, Tsou, S.T. (ed.) London: Elsevier, 2006. Available at http://arXiv.org/list/math-ph/0411072, 2004
  10. 10.
    Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633–652 (1996)MATHCrossRefADSGoogle Scholar
  11. 11.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle – A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)MATHADSMathSciNetGoogle Scholar
  12. 12.
    Brunetti R., Ruzzi G.: Superselection sectors and general covariance. I. Commun. Math. Phys. 270(1), 69–108 (2007)MATHADSMathSciNetGoogle Scholar
  13. 13.
    Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Carpi, S., Kawahigashi, Y., Longo, R.: Structure and classification of superconformal nets. http://arXiv.org/abs/0705.3609v2[math-ph], 2007
  15. 15.
    Casimir H.B.G., Polder D.: The Influence of Retardation on the London-van der Waals Forces. Phys. Rev. 73, 360–372 (1948)MATHCrossRefADSGoogle Scholar
  16. 16.
    Dixmier, J.: C*–algebras. Amsterdam - New York - Tokio: North Hollands Publishing Company, 1997Google Scholar
  17. 17.
    Doebner H.D., Šťoviček P., Tolar J.: Quantization of kinematics on configuration manifolds. Rev. Math. Phys. 13, 799–845 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics I. Commun. Math Phys. 23, 199–230 (1971); Local observables and particle statistics II. Commun. Math Phys. 35, 49–85 (1974)Google Scholar
  19. 19.
    Doplicher S., Roberts J.E.: A new duality theory for compact groups. Invent. Math. 98(1), 157–218 (1989)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Doplicher S., Roberts J.E.: Why there is a field algebra with a compact gauge group describing the superselection sectors in particle physics. Commun. Math. Phys. 131(1), 51–107 (1990)MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Ehrenberg W., Siday R.E.: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. B62, 8–21 (1949)ADSGoogle Scholar
  22. 22.
    Ellis G.F.R., Hawking S.W.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)MATHGoogle Scholar
  23. 23.
    Fredenhagen K., Haag R.: Generally covariant quantum field theory and scaling limits. Commun. Math. Phys. 127(2), 273–284 (1990)MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. II: Geometric aspects and conformal invariance. Rev. Math Phys. Special Issue, 113–157 (1992)Google Scholar
  25. 25.
    Freed D.S.: Classical Chern-Simons theory. I. Adv. Math. 113(2), 237–303 (1995)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Guido D., Longo R., Roberts J.E., Verch R.: Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13(2), 125–198 (2001)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Gray B.: Homotopy Theory: An Introduction to Algebraic Topology. Academic Press, New York (1975)MATHGoogle Scholar
  28. 28.
    Haag, R.: Local Quantum Physics. 2nd ed. Springer Texts and Monographs in Physics, Berlin-Heidelberg-New York: Springer, 1996Google Scholar
  29. 29.
    Hannay J.H.: Angle variable anholonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A: Math. Gen. 18, 221–230 (1985)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)MATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. http://arxiv.org/abs/0705.3340v3[gr-qc], 2007
  32. 32.
    Halvorson, H., Müger, M.: Algebraic quantum field theory. http://arxiv.org/list/math-ph/0602036, 2006, to appear in the Handbook of the Philosophy of Physicis, North Holland publisher
  33. 33.
    Jahn H., Teller E.: Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. Royal Soc. London. Series A, Math. Phys. Sci. 161, 220–235 (1937)MATHCrossRefADSGoogle Scholar
  34. 34.
    Kawahigashi Y., Longo R.: Classification of local conformal nets. Case c < 1. Ann. of Math. (2) 160, 493–522 (2004)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras I and II. Orlando-New York: Academic Press, Inc., 1983 and 1986Google Scholar
  36. 36.
    Lachieze-Rey M., Luminet J.P.: Cosmic Topology. Phys. Rept. 254, 135–214 (1995)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Landsman, N.P.: Quantization and superselection sectors. I. Transformation group C*-algebras. Rev. Math. Phys. 2, 45–72 (1990); Quantization and superselection sectors. II. Dirac monopole and Aharonov-Bohm effect. Rev. Math. Phys. 2, 73–104 (1990)Google Scholar
  38. 38.
    Longo R., Roberts J.E.: A theory of dimension. K-Theory 11(2), 103–159 (1997)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Minguzzi, E., Sanchez, M.: The causal hierarchy of spacetimes. In: Baum, H., Alekseevsky, D. (eds.) Recent Developements in Pseudo-Riemanman Geometry, ESI Lect. Math. Phys., Zurich: Eur. Math. Soc. Pub. House, 2008, pp. 299–358; http://arxiv.org/list/gr-qc/0609119, 2006
  40. 40.
    Morchio, G., Strocchi, F.: Quantum mechanics on manifolds and topological effects. http://arxiv.org/abs/0707.3357v2[math-ph], 2007
  41. 41.
    Müger M.: The superselection structure of massive quantum field theories in 1 + 1 dimensions. Rev. Math. Phys. 10, 1147–1170 (1998)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    O’Neill B.: Semi–Riemannian geometry. Academic Press, New York (1983)MATHGoogle Scholar
  43. 43.
    Pancharatnam S.: Generalized theory of interference, and its applications. Part I: Coherent pencils. Proc. Indian Acad. Sci. 44, 247–262 (1956)MathSciNetGoogle Scholar
  44. 44.
    Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179(3), 529–553 (1996)MATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Roberts J.E.: Local cohomology and superselection structure. Commun. Math. Phys 51(2), 107–119 (1976)MATHCrossRefADSGoogle Scholar
  46. 46.
    Roberts, J.E.: Net cohomology and its applications to field theory. “Quantum Fields—Algebras, Processes”, L. Streit, ed., Wien, New York: Springer, 1980Google Scholar
  47. 47.
    Roberts, J.E.: Lectures on algebraic quantum field theory. In: The algebraic theory of superselection sectors. (Palermo 1989), Kastler D. ed., River Edge, NJ: World Sci. Publishing, 1990, pp. 1–112Google Scholar
  48. 48.
    Roberts, J.E.: More lectures in algebraic quantum field theory. In : Noncommutative geometry C.I.M.E. Lectures, Martina Franca, Italy, 2000. Editors: S. Doplicher, R. Longo, Berlin-Heidelberg-New York: Springer, 2003Google Scholar
  49. 49.
    Roberts J.E., Ruzzi G.: A cohomological description of connections and curvature over posets. Theo. App. Cat. 16(30), 855–895 (2006)MATHMathSciNetGoogle Scholar
  50. 50.
    Roberts, J.E., Ruzzi, G., Vasselli, E.: A theory of bundles over posets. Available as http://arxiv.org/abs/0707.0240v2[math.AT], 2007
  51. 51.
    Ruzzi G.: Essential properties of the vacuum sector for a theory of superselection sectors. Rev. Math. Phys. 15(10), 1255–1283 (2003)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Ruzzi G.: Punctured Haag duality in locally covariant quantum field theories. Commun. Math. Phys. 256, 621–634 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Ruzzi G.: Homotopy of posets, net-cohomology, and theory of superselection sectors in globally hyperbolic spacetimes. Rev. Math. Phys. 17(9), 1021–1070 (2005)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Senovilla J.M.M.: Singularity theorems and their consequences. Gen. Rel. Grav. 29(5), 701–848 (1997)Google Scholar
  55. 55.
    Souradeep T.: Spectroscopy of cosmic topology. Indian J. Phys. 80, 1063–1069 (2006)Google Scholar
  56. 56.
    Verch R.: Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields in curved spacetime. Rev. Math. Phys. 9(5), 635–674 (1997)MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Wald R.M.: General Relativity. Chicago, IL: University of Chicago Press, 1984MATHGoogle Scholar
  58. 58.
    Wheeler J.A.: Geons. Phys. Rev. 97, 511–536 (1955)MATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di TrentoPovo (TN)Italy
  2. 2.Dipartimento di MatematicaUniversità di Roma “Tor Vergata,”RomaItaly

Personalised recommendations