Communications in Mathematical Physics

, Volume 286, Issue 1, pp 179–215 | Cite as

Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms

Article

Abstract

We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant α. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an L1 function and compute the effective charge of the system, recovering the usual renormalization of charge: the physical coupling constant is related to α by the formula αphys ≃ α(1 + 2α/(3π) log Λ)−1, where Λ is the ultraviolet cut-off. We eventually prove an estimate on the highest number of electrons which can be bound by a nucleus of charge Z. In the nonrelativistic limit, we obtain that this number is  ≤  2Z, recovering a result of Lieb. This work is based on a series of papers by Hainzl, Lewin, Séré and Solovej on the mean-field approximation of no-photon QED.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach V., Barbaroux J.-M., Helffer B., Siedentop H.: On the Stability of the Relativistic Electron-Positron Field. Commun. Math. Phys. 201, 445–460 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Barbaroux J.-M., Farkas W., Helffer B., Siedentop H.: On the Hartree-Fock equations of the electron-positron field. Commun. Math. Phys. 255(1), 131–159 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bjorken J.D., Drell S.D.: Relativistic quantum fields. McGraw-Hill, New York-Toronto-London-Sydney (1965)MATHGoogle Scholar
  4. 4.
    Cancès É., Deleurence A., Lewin M.: A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case. Commun. Math. Phys. 281, 129–177 (2008)CrossRefADSMATHGoogle Scholar
  5. 5.
    Chaix, P.: Une Méthode de Champ Moyen Relativiste et Application à l’Etude du Vide de l’Electrodynamique Quantique. PhD Thesis, University Paris VI, 1990Google Scholar
  6. 6.
    Chaix P., Iracane D.: From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism. J. Phys. B. 22, 3791–3814 (1989)CrossRefADSGoogle Scholar
  7. 7.
    Dirac P.A.M.: The quantum theory of the electron. Proc. Roy. Soc. A 117, 610–624 (1928)CrossRefADSGoogle Scholar
  8. 8.
    Dirac P.A.M.: A theory of electrons and protons. Proc. Roy. Soc. A 126, 360–365 (1930)CrossRefADSGoogle Scholar
  9. 9.
    Dirac, P.A.M.: Théorie du positron. Septième Congrès de Phys. Solvay(22–29 Oct. 1933) Paris: Gauthier-Villars, 1934, pp. 203–212Google Scholar
  10. 10.
    Dirac P.A.M.: Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Camb. Philos. Soc. 30, 150–163 (1934)CrossRefGoogle Scholar
  11. 11.
    Engel, E.: Relativistic Density Functional Theory: Foundations and Basic Formalism. Chap. 10 in Relativistic Electronic Structure Theory, Part 1.Fundamentals, edited by P. Schwerdtfeger, Amsterdam: Elsevier, 2002, pp. 524–624Google Scholar
  12. 12.
    Hainzl C., Lewin M., Séré É.: Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)MATHCrossRefADSGoogle Scholar
  13. 13.
    Hainzl C., Lewin M., Séré É.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A: Math & Gen. 38, 4483–4499 (2005)MATHCrossRefADSGoogle Scholar
  14. 14.
    Hainzl, C., Lewin, M., Séré, É.: Existence of atoms and molecules in the mean-field approximation of no-photon Quantum Electrodynamics. Arch. Rat. Mech. Anal., in press, doi:DOI:10.1007/s00205-008-0144-2
  15. 15.
    Hainzl C., Lewin M., Solovej J.P.: The Mean-Field Approximation in Quantum Electrodynamics. The No-Photon Case. Comm. Pure Applied Math. 60(4), 546–596 (2007)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hainzl C., Lewin M., Séré É., Solovej J.P.: A Minimization Method for Relativistic Electrons in a Mean-Field Approximation of Quantum Electrodynamics. Phys. Rev. A 76, 052104 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Itzykson C., Zuber J.-B.: Quantum Field Theory. McGraw Hill, New York (1980)Google Scholar
  18. 18.
    Klaus M., Scharf G.: The regular external field problem in quantum electrodynamics. Helv. Phys. Acta 50, 779–802 (1977)MathSciNetGoogle Scholar
  19. 19.
    Landau, L.D.: On the quantum theory of fields. In: Bohr Volume, Oxford: Pergamon Press, 1955. Reprinted in Collected papers of L.D. Landau (article n. 84), edited by D. Ter Haar, Oxford: Pergamon Press, 1965Google Scholar
  20. 20.
    Lieb E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29(6), 3018–3028 (1984)CrossRefADSGoogle Scholar
  21. 21.
    Lieb E.H., Loss M.: Existence of Atoms and Molecules in Non-Relativistic Quantum Electrodynamics. Adv. Theor. Math. Phys. 7(4), 667–710 (2003)MATHMathSciNetGoogle Scholar
  22. 22.
    Lieb E.H., Siedentop H.: Renormalization of the regularized relativistic electron-positron field. Commun. Math. Phys. 213(3), 673–683 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Pauli W., Rose M.E.: Remarks on the Polarization Effects in the Positron Theory. Phys. Rev II 49, 462–465 (1936)MATHCrossRefADSGoogle Scholar
  24. 24.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Second edition. New York: Academic Press, Inc. 1980Google Scholar
  25. 25.
    Seiler E., Simon B.: Bounds in the Yukawa2 Quantum Field Theory: Upper Bound on the Pressure, Hamiltonian Bound and Linear Lower Bound. Commun. Math. Phys. 45, 99–114 (1975)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Simon, B.: Trace Ideals and their Applications. Vol. 35 of London Mathematical Society Lecture Notes Series, Cambridge: Cambridge University Press, 1979Google Scholar
  27. 27.
    Solovej J.P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104(2), 291–311 (1991)MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Thaller B.: The Dirac Equation. Springer Verlag, Berlin-Heidelberg-New York (1992)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Philippe Gravejat
    • 1
  • Mathieu Lewin
    • 2
  • Éric Séré
    • 1
  1. 1.CEREMADE, UMR 7534Université Paris-DauphineParis Cedex 16France
  2. 2.CNRS & Laboratoire de Mathématiques UMR 8088Université de Cergy-PontoiseCergy-Pontoise CedexFrance

Personalised recommendations