Communications in Mathematical Physics

, Volume 287, Issue 1, pp 275–290 | Cite as

A Translation-Invariant Renormalizable Non-Commutative Scalar Model

Open Access


In this paper we propose a translation-invariant scalar model on the Moyal space. We prove that this model does not suffer from the UV/IR mixing and we establish its renormalizability to all orders in perturbation theory.


External Momentum Power Counting Feynman Graph External Line Wave Function Renormalization 


  1. 1.
    Connes, A.: Géometrie non commutative. Paris: InterEditions, 1990Google Scholar
  2. 2.
    Snyder H.S.: Deformation quantization for actions of the affine group. Phys. Rev. 71, 38 (1947)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Connes A., Douglas M.R., Schwarz A.: Noncommutative Geometry and Matrix Theory: Compactification on Tori. JHEP 9802, 3–43 (1998)CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Seiberg N., Witten E.: String theory and noncommutative geometry. JHEP 9909, 32–131 (1999)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Susskind, L.: The Quantum Hall Fluid and Non-Commutative Chern Simons Theory., 2001
  6. 6.
    Polychronakos A.P.: Quantum Hall states on the cylinder as unitary matrix Chern-Simons theory. JHEP 06, 70–95 (2001)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Hellerman S., Van Raamsdonk M.: Quantum Hall physics equals noncommutative field theory. JHEP 10, 39–51 (2001)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Minwalla S., Van Raamsdonk M., Seiberg N.: Noncommutative perturbative dynamics. JHEP 0002, 020 (2000)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Bahns, D.: The shuffle Hopf algebra and quasiplanar Wick products, conference proceedings. Non commutative Geometry and Physics, (Orsay, April 2007), [math.QA], 2007
  10. 10.
    Grosse H., Wulkenhaar R.: Power-counting theorem for non-local matrix models and renormalization. Commun. Math. Phys. 254, 91–127 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Grosse H., Wulkenhaar R.: Renormalization of ϕ 4-theory on noncommutative \({{\mathbb R}^4}\) in the matrix base. Commun. Math. Phys. 256, 305–374 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Langmann E., Szabo R.J.: Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533, 168 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Rivasseau V., Vignes-Tourneret F., Wulkenhaar R.: Renormalization of noncommutative \({\phi^{\star4}_4}\) -theory by multi-scale analysis. Commun. Math. Phys. 262, 565–594 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F.: Renormalization of non-commutative \({\phi^{4}_{4}}\) field theory in x space. Commun. Math. Phys. 267, 515 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Grosse H., Wulkenhaar R.: The beta-function in duality-covariant noncommutative ϕ 4 theory. Eur. Phys. J. C 35, 277 (2004)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Disertori M., Rivasseau V.: Two and three loops beta function of non-commutative phi(4)**4 theory. Eur. Phys. J. C 50, 661 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Disertori M., Gurau R., Magnen J., Rivasseau V.: Vanishing of beta function of non-commutative \({\phi^{4}_{4}}\) q theory to all orders. Phys. Lett. B 649, 95 (2007)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Gurău R., Rivasseau V.: Parametric representation of noncommutative field theory. Commun. Math. Phys. 272, 811 (2007)MATHCrossRefADSGoogle Scholar
  19. 19.
    Rivasseau V., Tanasa A.: Parametric representation of ‘covariant’ noncommutative QFT models. Commun. Math. Phys. 279(2), 355–379 (2008)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Gurau, R., Malbouisson, A.P.C., Rivasseau, V., Tanasa, A.: Non-Commutative Complete Mellin Representation for Feynman Amplitudes. [math-ph], 2007
  21. 21.
    Gurau, R., Tanasa, A.: Dimensional regularization and renormalization of non-commutative QFT. Submitted to Annales Henri Poincare, [math-ph], 2007
  22. 22.
    Tanasa A., Vignes-Tourneret F.: Hopf algebra of non-commutative field theory. Journ. Noncomm. Geom. 2, 125–139 (2008)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Vignes-Tourneret F.: Renormalization of the orientable non-commutative Gross-Neveu model. Annales Henri Poincare 8, 427 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Duplantier, B., Rivasseau, V. eds.: Quantum Spaces, Progress in Mathematical Physics 53, Basel-Bosten: Birkhäuser, 2007Google Scholar
  25. 25.
    Langmann E., Szabo R.J., Zarembo K.: Exact solution of quantum field theory on noncommutative phase spaces. JHEP 0401, 17–87 (2004)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    de Goursac A., Wallet J.C., Wulkenhaar R.: Noncommutative induced gauge theory. Eur. Phy. J. C 51, 977 (2007)CrossRefADSGoogle Scholar
  27. 27.
    Grosse, H., Wohlgenannt, M.: Induced Gauge Theory on a Noncommutative Space., 2007
  28. 28.
    Grosse, H., Wulkenhaar, R.: 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory., V1 [hep-th], 2007
  29. 29.
    de Goursac A., Tanasa A., Wallet J.C.: Vacuum configurations for renormalizable non-commutative scalar models. Eur. Phys. J. C 53, 459 (2008)CrossRefADSGoogle Scholar
  30. 30.
    Helling, R.C., You, J.: Macroscopic Screening of Coulomb Potentials From UV/IR-Mixing. [hep-th], 2007
  31. 31.
    Filk T.: Phys. Lett. B 376, 53 (1996)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Rivasseau V.: From perturbative to Constructive Field Theory. Princeton University Press, Princeton, NJ (1991)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, CNRS UMR 8627, bât. 210Université Paris XIOrsay CedexFrance
  2. 2.Centre de Physique Théorique, CNRS UMR 7644Ecole PolytechniquePalaiseauFrance
  3. 3.Institutul de Fizica si Inginerie Nucleara Horia HulubeiBucuresti-MagureleRomania
  4. 4.Max-Planck-Institut fur MathematikBonnGermany

Personalised recommendations