Communications in Mathematical Physics

, Volume 287, Issue 2, pp 749–767 | Cite as

Superstring Scattering Amplitudes in Higher Genus

Article

Abstract

In this paper we continue the program pioneered by D’Hoker and Phong, and recently advanced by Cacciatori, Dalla Piazza, and van Geemen, of finding the chiral superstring measure by constructing modular forms satisfying certain factorization constraints. We give new expressions for their proposed ansätze in genera 2 and 3, respectively, which admit a straightforward generalization. We then propose an ansatz in genus 4 and verify that it satisfies the factorization constraints and gives a vanishing cosmological constant. We further conjecture a possible formula for the superstring amplitudes in any genus, subject to the condition that certain modular forms admit holomorphic roots.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beilinson A., Manin F.: The Mumford form and the Polyakov measure in string theory. Commun. Math. Phys. 107, 359–376 (1986)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Cacciatori S.L., Dalla Piazza F.: Two loop superstring amplitudes and S 6 representations. Lett. Math. Phys. 83(2), 127–138 (2008)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Cacciatori, S.L., Dalla Piazza, F., van Geemen, B.: Modular Forms and Three Loop Superstring Amplitudes. http://arXiv.org/abs/0801.2543v2[hepth], 2008
  4. 4.
    van Geemen B., van der Geer G.: Kummer varieties and the moduli spaces of abelian varieties. Amer. J. of Math. 108, 615–642 (1986)MATHCrossRefGoogle Scholar
  5. 5.
    Green M.B., Schwarz J.H.: Supersymmetrical string theories. Phys. Lett. B 109, 444–448 (1982)CrossRefADSGoogle Scholar
  6. 6.
    Gross D.J., Harvey J.A., Martinec E.J., Rohm R.: Heterotic String Theory (II). The interacting heterotic string. Nucl. Phys. B 267, 75 (1986)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    D’Hoker E., Phong D.H.: Multiloop amplitudes for the bosonic Polyakov string. Nucl. Phys. B 269, 205–234 (1986)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    D’Hoker E., Phong D.H.: Two-Loop Superstrings I, Main Formulas. Phys. Lett. B 529, 241–255 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    D’Hoker E., Phong D.H.: Two-Loop Superstrings II, The chiral Measure on Moduli Space. Nucl. Phys. B 636, 3–60 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    D’Hoker E., Phong D.H.: Two-Loop Superstrings III, Slice Independence and Absence of Ambiguities. Nucl. Phys. B 636, 61–79 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    D’Hoker E., Phong D.H.: Two-Loop Superstrings IV, The Cosmological Constant and Modular Forms. Nucl. Phys. B 639, 129–181 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    D’Hoker E., Phong D.H.: Asyzygies, modular forms, and the superstring measure I. Nucl. Phys. B 710, 58 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    D’Hoker E., Phong D.H.: Asyzygies, modular forms, and the superstring measure. II. Nucl. Phys. B 710, 83 (2005)MATHMathSciNetGoogle Scholar
  14. 14.
    D’Hoker E., Phong D.H.: Two-Loop Superstrings V, Gauge Slice Independence of the N-Point Function. Nucl. Phys. B 715, 91–119 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D’Hoker E., Phong D.H.: Two-Loop Superstrings VI, Non-Renormalization Theorems and the 4-Point Function. Nucl. Phys. B 715, 3–90 (2005)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Igusa, J.-I.: Theta functions. Die Grundlehren der mathematischen Wissenschaften, Band 194. New York-Heidelberg: Springer-Verlag, 1972Google Scholar
  17. 17.
    Krazer A.: Lehrbuch der Thetafunktionen. B. G. Teubner, Leipzig (1903)MATHGoogle Scholar
  18. 18.
    Manin Y.: The partition function of the Polyakov string can be expressed in terms of theta functions. Phys. Lett. B 172, 184–185 (1986)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Matone M., Volpato R.: Higher genus superstring amplitudes from the geometry of moduli space. Nucl. Phys. B 732, 321–340 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Oura M., Poor C., Yuen D.S.: Toward the Siegel ring in genus four. Int. J. Number Th. 4(4), 563–586 (2008)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Oura, M., Salvati Manni, R.: On the image of code polynomials under theta map. http://arXiv.org/abs/0803.4389v1[math-NT], 2008
  22. 22.
    Poor C., Yuen D.S.: Linear dependence among Siegel modular forms. Math. Ann. 318, 205–234 (2000)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Salvati Manni R.: On the dimension of the vector space \({\mathbb {C}[\theta_m]_4}\) . Nagoya Math. J. 98, 99–107 (1985)MATHMathSciNetGoogle Scholar
  24. 24.
    Salvati Manni R.: Modular varieties with level 2 theta structure. Amer. J. Math. 116, 1489–1511 (1994)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Salvati Manni, R.: Remarks on Superstring amplitudes in higher genus. Nucl. Phys. B, to appear, http://arXiv.org/abs/0804.0512v2[hep-th], 2008
  26. 26.
    Verlinde E., Verlinde H.: Chiral Bosonization, determinants and the string partition function. Nucl. Phys. B 288, 357–396 (1987)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations