Communications in Mathematical Physics

, Volume 286, Issue 3, pp 1073–1098 | Cite as

Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems

  • Bruno Nachtergaele
  • Hillel Raz
  • Benjamin Schlein
  • Robert Sims


We prove Lieb-Robinson bounds for systems defined on infinite dimensional Hilbert spaces and described by unbounded Hamiltonians. In particular, we consider harmonic and certain anharmonic lattice systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Saidi W.A., Stroud D.: Phase phonon spectrum and melting in a quantum rotor model with diagonal disorder. Phys Rev B 67, 024511 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Aoki K., Lukkarinen J., Spohn H.: Energy Transport in Weakly Anharmonic Chains. J. Stat. Phys. 124, 1105 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bonetto F., Lebowitz J.L., Rey-Bellet L. et al.: Fourier’s Law: a Challenge to Theorists. In: Fokas, A. (eds) Mathematical Physics 2000., pp. 128–150. Imperial College Press, London (2000)Google Scholar
  4. 4.
    Bratteli O., Robinson D.: Operator Algebras and Quantum Statistical Mechanics 1. Second Edition. Springer Verlag, Berlin-Heidelberg-New York (1987)MATHGoogle Scholar
  5. 5.
    Bratteli O., Robinson D.: Operator Algebras and Quantum Statistical Mechanics 2. Second Edition. Springer Verlag, Berlin-Heidelberg-New York (1997)MATHGoogle Scholar
  6. 6.
    Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006)CrossRefADSGoogle Scholar
  7. 7.
    Buerschaper, O.: Dynamics of correlations and quantum phase transitions in bosonic lattice systems. Diploma Thesis, Ludwig-Maximilians University, Munich, 2007Google Scholar
  8. 8.
    Buttà P., Caglioti E., Di Ruzza S., Marchioro C.: On the propagation of a perturbation in an anharmonic system. J. Stat. Phys. 127(2), 313–325 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Cramer M., Eisert J.: Correlations, spectral gap, and entanglement in harmonic quantum systems on generic lattices. New J. Phys. 8, 71 (2006)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Eisert J., Osborne T.J.: General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Gregor K., Huse D.A., Sondhi S.L.: Spin-nematic order in the frustrated pyrochlore-lattice quantum rotor model. Phys. Rev. B 74, 024425 (2006)CrossRefADSGoogle Scholar
  12. 12.
    Hastings M.B.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)CrossRefADSGoogle Scholar
  13. 13.
    Hastings, M.B.: An Area Law for One Dimensional Quantum Systems. J. Stat. Mech. P08024 (2007)Google Scholar
  14. 14.
    Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265(3), 781–804 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Lanford O.E., Lebowitz J., Lieb E.H.: Time evolution of infinite anharmonic systems. J. Stat. Phys. 16(6), 453–461 (1977)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Marchioro C., Pellegrinotti A., Pulvirenti M., Triolo L.: Velocity of a perturbation in infinite lattice systems. J. Stat. Phys. 19(5), 499–510 (1978)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Nachtergaele B., Sims R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119–130 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Nachtergaele B., Ogata Y., Sims R.: Propagation of Correlations in Quantum Lattice Systems. J. Stat. Phys. 124(1), 1–13 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Nachtergaele B., Sims R.: A multi-dimensional Lieb-Schultz-Mattis Theorem. Commun. Math. Phys. 276, 437–472 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Nachtergaele, B., Sims, R.: Locality in Quantum Spin Systems. 0712.3318VI[math-ph], 2007, to appear in Proc. of ICMPXV, Rio de Janeiro, 2006Google Scholar
  22. 22.
    Polak T.P., Kopeć T.K.: Quantum rotor description of the Mott-insulator transition in the Bose-Hubbard model. Phys. Rev. B 76, 094503 (2007)CrossRefADSGoogle Scholar
  23. 23.
    Schuch N., Cirac J.I., Wolf M.M.: Quantum states on Harmonic lattices. Commun. Math. Phys. 267, 65 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Spohn H.: The Phonon Boltzmann Equation, Properties and Link to Weakly Anharmonic Lattice Dynamics. J. Stat. Phys. 124, 1041–1104 (2006)MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Bruno Nachtergaele
    • 1
  • Hillel Raz
    • 1
  • Benjamin Schlein
    • 2
  • Robert Sims
    • 3
  1. 1.Department of MathematicsUniversity of California at DavisDavisUSA
  2. 2.Institute of MathematicsUniversity of MunichMunichGermany
  3. 3.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations