Advertisement

Communications in Mathematical Physics

, Volume 286, Issue 3, pp 1159–1180 | Cite as

The Spin-Statistics Theorem for Anyons and Plektons in d = 2+1

  • Jens MundEmail author
Article

Abstract

We prove the spin-statistics theorem for massive particles obeying braid group statistics in three-dimensional Minkowski space. We start from first principles of local relativistic quantum theory. The only assumption is a gap in the mass spectrum of the corresponding charged sector, and a restriction on the degeneracy of the corresponding mass.

Keywords

Mass Shell Superselection Sector Universal Covering Group Wigner Rotation Unique Lift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Binegar B.: Relativistic field theories in three dimensions. J. Math. Phys. 23, 1511 (1982)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Buchholz D., Epstein H.: Spin and statistics of quantum topological charges. Fysica 17, 329–343 (1985)Google Scholar
  3. 3.
    Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys 84, 1–54 (1982)zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics I. Commun. Math. Phys. 23, 199 (1971)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics II. Commun. Math. Phys. 35, 49–85 (1974)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Fredenhagen K.: On the existence of antiparticles. Commun. Math. Phys 79, 141–151 (1981)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Fredenhagen, K.: Sum rules for spins in (2+1)-dimensional quantum field theory. In: Quantum Groups, Berlin-Heidelberg-New York: H.D. Doebner et al., ed., Lecture Notes in Physics, Vol. 370, Springer, 1990, pp. 340–348Google Scholar
  8. 8.
    Fredenhagen K., Gaberdiel M., Rüger S.M.: Scattering states of plektons (particles with braid group statistics) in 2+1 dimensional field theory. Commun. Math. Phys. 175, 319–355 (1996)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras II: Geometric aspects and conformal covariance. Rev. Math. Phys. SI1, 113–157 (1992)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fröhlich J., Gabbiani F.: Braid statistics in local quantum field theory. Rev. Math. Phys. 2, 251–353 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fröhlich J., Marchetti P.A.: Spin-statistics theorem and scattering in planar quantum field theories with braid statistics. Nucl. Phys. B 356, 533–573 (1991)CrossRefADSGoogle Scholar
  12. 12.
    Haag, R.: Local quantum physics, Second ed., Texts and Monographs in Physics, Berlin-Heidelberg: Springer, 1996Google Scholar
  13. 13.
    Jackiw R., Nair V.P.: Relativistic wave equations for anyons. Phys. Rev. D 43, 1933 (1991)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Longo, R.: On the spin-statistics relation for topological charges. In: Operator Algebras and Quantum Field Theory, S. Doplicher, R. Longo, J. Roberts, L. Zsido, eds., Cambridge, MA: Int. Press, 1997, pp. 661–669Google Scholar
  15. 15.
    Mund, J.: The CPT and Bisognano-Wichmann theorems for massive theories with braid group statistics in d = 2 + 1. In preparationGoogle Scholar
  16. 16.
    Mund, J.: Quantum Field Theory of Particles with Braid Group Statistics in 2+1 Dimensions. Ph.D. thesis, Freie Universität Berlin, 1998Google Scholar
  17. 17.
    Mund J.: Modular localization of massive particles with “any” spin in d = 2 + 1. J. Math. Phys. 44, 2037–2057 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Mund, J., Rehren, K.-H.: Symmetries in QFT of lower spacetime dimensions. In: Encyclopedia of Mathematical Physics, J.-P. Françoise, G. Naber, T.S. Tsun, eds., Vol. 5, Amslevdom: Elsevier, 2006, pp. 172–179Google Scholar
  19. 19.
    Roberts J.E.: Local cohomology and superselection structure. Commun. Math. Phys. 51, 107–119 (1976)zbMATHCrossRefADSGoogle Scholar
  20. 20.
    Roberts, J.E.: Net cohomology and its applications to field theory. In: Quantum Fields – Algebras, Processes L. Streit, ed., Wien, New York: Springer, 1980, pp. 239–268Google Scholar
  21. 21.
    Roberts, J.E.: Lectures on algebraic quantum field theory. The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, D. Kastler, ed., Singapore - New Jersey-London-Hong Kong: World Scientific, 1990, pp. 1–112Google Scholar
  22. 22.
    Streater R.F., Wightman A.S.: PCT, spin and statistics, and all that. W. A. Benjamin Inc, New York (1964)zbMATHGoogle Scholar
  23. 23.
    Varadarajan V.S.: Geometry of quantum theory. Vol. II. Van Nostrand Reinhold Co, New York (1970)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations