Communications in Mathematical Physics

, Volume 286, Issue 3, pp 1099–1140 | Cite as

On the Crystallization of 2D Hexagonal Lattices

Article

Abstract

It is a fundamental problem to understand why solids form crystals at zero temperature and how atomic interaction determines the particular crystal structure that a material selects. In this paper we focus on the zero temperature case and consider a class of atomic potentials V = V2 + V3, where V2 is a pair potential of Lennard-Jones type and V3 is a three-body potential of Stillinger-Weber type. For this class of potentials we prove that the ground state energy per particle converges to a finite value as the number of particles tends to infinity. This value is given by the corresponding value for a optimal hexagonal lattice, optimized with respect to the lattice spacing. Furthermore, under suitable periodic or Dirichlet boundary condition, we show that the minimizers do form a hexagonal lattice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanc X., Le Bris C.: Periodicity of the infinite-volume ground state of a one-dimensional quantum model. Nonlinear Anal. Ser. A: Theory Methods 48(6), 791–803 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Friesecke G., James R., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55, 1461–1506 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gardner C.S., Radin C.: The infinite-volume ground state of the Lennard-Jones potential. J. Stat. Phys. 20(6), 719–724 (1979)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Hamrick G.C., Radin C.: The symmetry of ground states under perturbation. J. Stat. Phys. 21, 601–607 (1979)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Heitman R., Radin C.: Ground states for sticky disks. J. Stat. Phys. 22, 281–287 (1980)CrossRefADSGoogle Scholar
  6. 6.
    John F.: Rotation and strain. Comm. Pure. Appl. Math. 14, 391–413 (1961)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kohn R.V.: New integral estimates for deformations in terms of their nonlinear strain. Arch. Mech. Anal. 78, 131–172 (1982)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Müller S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Part. Differ. Eqs. 1(2), 169–204 (1993)MATHCrossRefGoogle Scholar
  9. 9.
    Radin C.: The ground state for soft disks. J. Stat. Phys. 26(2), 367–372 (1981)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Radin C.: Classical ground states in one dimension. J. Stat. Phys. 35, 109–117 (1983)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Radin C., Schulmann L.S.: Periodicity of classical ground states, Phys. Rev. Lett. 51(8), 621–622 (1983)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Radin C.: Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. B 1, 1157–1191 (1987)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Rickman, S.: Quasiregular mappings. Berlin Heidelberg-New York Springer-Verlag, 1993Google Scholar
  14. 14.
    Theil F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2005)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Ventevogel W.J.: On the configuration of a one-dimensional system of interacting particles with minimum potential energy per particle. Phys. A. 92, 343–361 (1978)CrossRefGoogle Scholar
  16. 16.
    Ventevogel W.J., Nijboer B.R.A.: On the configuration of systems of interacting particle with minimum potential energy per particle. Phys. A. 98, 274–288 (1979)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ventevogel W.J., Nijboer B.R.A.: On the configuration of systems of interacting particles with minimum potential energy per particle. Phys. A. 99, 565–580 (1979)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Nijboer B.R.A., Ruijgrok Th.W.: On the minimum-energy configuration of a one-dimensional system of particles interacting with the potential \({\phi(x)=(1+x^4)^{-1}}\) . Phys. A. 133, 319–329 (1985)CrossRefGoogle Scholar
  19. 19.
    Yedder, A.B.H., Blanc, X., Le Bris, C.: A numerical investigation of the 2-dimensional crystal problem. Preprint CERMICS (2003), available at http://www.ann.jussieu.fr/publications/2003/R03003.html, 2003

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mathematics and Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  2. 2.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations