Advertisement

Communications in Mathematical Physics

, Volume 285, Issue 2, pp 503–535 | Cite as

Symmetry Breaking in Laughlin’s State on a Cylinder

  • S. JansenEmail author
  • E. H. Lieb
  • R. Seiler
Article

Abstract

We investigate Laughlin’s fractional quantum Hall effect wave function on a cylinder. We show that it displays translational symmetry breaking in the axial direction for sufficiently thin cylinders. At filling factor 1/p, the period is p times the period of the filled lowest Landau level. The proof uses a connection with one-dimensional polymer systems and discrete renewal equations.

Keywords

Normalization Constant Renewal Equation Vandermonde Determinant Lower Landau Level Thin Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AANS.
    Akkermans E., Avron J.E., Narevich R., Seiler R.: Boundary Conditions for Bulk and Edge States in Quantum Hall Systems. Eur. Phys. J. B 1, 117–121 (1998)CrossRefADSGoogle Scholar
  2. AGL.
    Aizenman M., Goldstein S., Lebowitz J.L.: Bounded Fluctuations and Translation Symmetry Breaking in One-Dimensional Particle Systems. J. Stat. Phys. 103, 601–618 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. AM.
    Aizenman M., Martin P.A.: Structure of Gibbs States of one Dimensional Coulomb Systems. Commun. Math. Phys. 78, 99–116 (1980)CrossRefADSMathSciNetGoogle Scholar
  4. BK.
    Bergholtz, E.J., Karlhede, A.: One-dimensional theory of the Quantum Hall systems. J. Stat. Mech. L04001 (2006); Quantum Hall system in the Tao-Thouless limit, Phys. Rev. B 77, 55308 (2008)Google Scholar
  5. BL.
    Brascamp, H.J., Lieb, E.H.: Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma. In: Functional Integration and its Applications. A.M. Arthurs, ed., Oxford: Clarendon Press, 1975, pp. 1–14Google Scholar
  6. BR.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics. Vol. 1. Berlin-Heidelberg-New York, Springer -Verlag (1979)Google Scholar
  7. CFS.
    Choquard P., Forrester P.J., Smith E.R.: The two-dimensional one-component plasma at Γ  = 2: the semiperiodic strip. J. Stat. Phys. 33, 13–22 (1983)zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. D.
    Dunne G.V.: Slater Decomposition of Laughlin States. Int. J. Mod. Phys. B 7, 4783–4813 (1993)CrossRefADSMathSciNetGoogle Scholar
  9. Fel.
    Feller W.: An introduction to probability theory and its applications. 2 ed., Vol. 1. John Wiley & Sons, New York (1962)Google Scholar
  10. FGIL.
    Di Francesco P., Gaudin M., Itzykson C., Lesage F.: Laughlin’s wave function, Coulomb gases and expansions of the discriminant. Int. J. Mod. Phys. A 9, 4287–4352 (1994)ADSMathSciNetGoogle Scholar
  11. For.
    Forrester P.J.: Finite-Size Corrections to the Free Energy of Coulomb Systems with a Periodic Boundary Condition. J. Stat. Phys. 63, 491–504 (1991)CrossRefADSMathSciNetGoogle Scholar
  12. GK.
    Gruber C., Kunz H.: General properties of polymer systems. Commun. Math. Phys. 22, 133–161 (1971)CrossRefADSMathSciNetGoogle Scholar
  13. HL.
    Heilmann O.J., Lieb E.H.: Theory of Monomer-Dimer Systems. Commun. Math. Phys. 25, 190–232 (1972)zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. HLP.
    Hardy G.H., Littlewood J.E., Pólya G.: Inequalities. Cambridge University Press, Cambridge (1964)Google Scholar
  15. HR.
    Haldane F.D.M., Rezayi E.H.: Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect. Phys. Rev. B 31, 2529–2531 (1985)CrossRefADSGoogle Scholar
  16. IVZ.
    Ioffe D., Velenik Y., Zahradnik M.: Entropy-Driven Phase Transition in a Polydisperse Hard-Rods Lattice System. J. Stat. Phys. 122, 761–786 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. JL.
    Jancovici B., Lebowitz J.L.: Bounded Fluctuations and Translation Symmetry Breaking: a Solvable Model. J. Stat. Phys. 103, 619–624 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. JLS.
    Jansen S., Lieb E.H., Seiler R.: Laughlin’s function on a cylinder: plasma analogy and representation as a quantum polymer. Phys. Stat. Sol. (b) 245, 439–446 (2008)CrossRefGoogle Scholar
  19. KTW.
    King R.C., Toumazet F., Wybourne B.G.: The square of the Vandermonde determinant and its q-generalisation. J. Phys. A 37, 737–767 (2001)MathSciNetGoogle Scholar
  20. K.
    Kunz H.: The One-Dimensional Classical Electron Gas. Ann. Phys. 85, 303–335 (1974)CrossRefADSMathSciNetGoogle Scholar
  21. Lau1.
    Laughlin R.B.: Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981)CrossRefADSGoogle Scholar
  22. Lau2.
    Laughlin R.B.: Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)CrossRefADSGoogle Scholar
  23. Len.
    Lenard A.: Exact Statistical Mechanics of a One-Dimensional System with Coulomb Forces. J. Math. Phys. 2, 682–693 (1961)zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. LL.
    Lebowitz J.L., Lieb E.H.: Existence of Thermodynamics for Real Matter with Coulomb Forces. Phys. Rev. Lett. 22, 631–634 (1969)CrossRefADSGoogle Scholar
  25. LeeLein.
    Lee D.-H., Leinaas J.M.: Mott Insulators without Symmetry Breaking. Phys. Rev. Lett. 92, 096401 (2004)CrossRefADSGoogle Scholar
  26. RH.
    Rezayi E.H., Haldane F.D.M.: Laughlin state on stretched and squeezed cylinders and edge excitations in the quantum Hall effect. Phys. Rev. B 50, 17199–17201 (1994)CrossRefADSGoogle Scholar
  27. SFL.
    Seidel A., Fu H., Lee D.-H., Leinaas J.M., Moore J.: Incompressible Quantum Liquids and New Conservation Laws. Phys. Rev. Lett 95, 266405 (2005)CrossRefADSGoogle Scholar
  28. ŠWK.
    Šamaj L., Wagner J., Kalinay P.: Translation Symmetry Breaking in the One-Component Plasma on the Cylinder. J. Stat. Phys. 117, 159–178 (2004)zbMATHCrossRefADSGoogle Scholar
  29. T.
    Thouless D.J.: Theory of the quantized Hall effect. Surf. Sci. 142, 147–154 (1984)CrossRefADSGoogle Scholar
  30. TSG.
    Tsui D.C., Störmer H.L., Gossard A.C.: Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 48, 1559–1562 (1982)CrossRefADSGoogle Scholar
  31. TT.
    Tao R., Thouless D.J.: Fractional quantization of Hall conductance. Phys. Rev. B 28, 1142–1144 (1983)CrossRefADSGoogle Scholar
  32. TW.
    Tao R., Wu Y.-S.: Gauge invariance and fractional quantum Hall effect. Phys. Rev. B 30, 1097–1098 (1984)CrossRefADSGoogle Scholar
  33. WH.
    Westerberg E., Hansson T.H.: Quantum mechanics on thin cylinders. Phys. Rev. B 47, 16554–16562 (1993)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations